

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

AUG - 3 2016

OFFICE OF ENFORCEMENT AND COMPLIANCE ASSURANCE

Colin McCormick Hearth and Home Technologies 1915 West Saunders Street Mount Pleasant, Iowa 52641

Re: Quadra-Fire Pioneer-II Model Non-Catalytic Wood Heater Recertification Letter Number 569

Dear Mr. McCormick:

In your July 26, 2016, letter to the United States Environmental Protection Agency (EPA), Hearth and Home Technologies (HHT) is requesting an updated certificate of compliance letter to add the Quadra-Fire Pioneer-II model, non-catalytic wood heater, to certificate number 569. According to your letter, the Quadra-Fire Pioneer-II model would be similar to the currently manufactured Heat and Glo NorthStar and the Heatilator Constitution models with a design change that consists of a single door instead of the split door on the current models. HHT states that the Quadra-Fire Pioneer-II model is incorporating a design change that will not impact the particulate emission rate. Therefore, HHT is requesting that the EPA waive the requirement for certification testing due to a design change that may not reasonably be anticipated to cause the model line to exceed the applicable emission limits.

Under 40 CFR Part 60, §60.533(k)(1), a model line must be recertified whenever any design change is made in the design submitted to the EPA, pursuant to §60.533(b)(2), that is presumed to affect the particulate emission rate for that model. However, if the design change is not reasonably anticipated to cause wood heaters in the model line to exceed the applicable emission limits, a waiver for certification testing may be granted.

Based on the model's January 2003 test report by OMNI-Test Laboratories, Inc. and the March 29, 2016, letter, provided by OMNI, the proposed design change is unlikely to cause the Quadra-Fire Pioneer-II model to exceed the model's emission rate of 3.2 g/hr, which meets the 2015 New Source Performance Standard (NSPS) for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces at 40 CFR Part 60, Subpart AAA particulate matter emission limit of 4.5 g/hr. Therefore, pursuant to §60.533(k)(1), EPA is waiving certification testing for the Quadra-Fire Pioneer-II model. Certificate number 569 is updated to include the Quadra-Fire Pioneer-II model. Please refer to certification number 569 in all future correspondence.

This recertification is valid for the Heat and Glo NorthStar, the Heatilator Constitution, and the Quadra-Fire Pioneer-II models and cannot be transferred to another model line without applying for certification. This recertification allows HHT to manufacture and sell the above-referenced models through May 14, 2020. Thereafter, HHT may not manufacture, advertise for sale, offer for sale, or sell wood heaters under this certificate without applying for and being issued another compliance certification.

All wood heaters manufactured or sold under this recertification must comply with EPA labeling requirements found at §60.536. These provisions require each wood heater to have a permanent label affixed to it that includes the month and year of manufacture, model name or number, serial number, certification test emission value, test method, standard met, and compliance certification statement. In addition, HHT must comply with all applicable requirements of the regulation, including:

- 1. On or after May 16, 2016, pursuant to §60.533(m), conducting a third-party certifier-approved quality assurance program which ensures that all units within a model line are similar to the wood heater submitted for certification testing in all respects that would affect emissions and are in compliance with the applicable emission limit;
- 2. Applying for recertification whenever any change is made to the Heat and Glo NorthStar, the Heatilator Constitution, and the Quadra-Fire Pioneer-II models that affect or is presumed to affect the particulate matter emission rate for the model line, pursuant to §60.533(k)(1);
- 3. Providing an owner's manual that includes the information listed in §60.536(g)(1) with each affected wood heater offered for sale;
- 4. Placing a copy of the certification test report and summary on the manufacturer's website. The test report and summary shall be available to the public within 30 days after the Administrator issues a certificate of compliance, pursuant to §60.533(b)(12);
- 5. Submitting a report to the Administrator every 2 years following issuance of a certificate of compliance for each model line. This report must include the sales for each model by state and certify that no changes in the design or manufacture of this model line have been made that require recertification under §60.533(k);
- 6. Retaining records and submitting reports as required at §60.537; and
- 7. Submitting wood heaters for audit testing if selected by the Administrator under §60.533(n)(1)(i) and (2)(i).

Failure to comply with these requirements may result in a revocation of this approval and an enforcement action, including penalties as specified under the Clean Air Act.

To promote transparency in the implementation of the Wood Heater Program, we suggest that manufacturers submit the Uniform Resource Locator (URL) or web address where the test report is posted to <u>WoodHeaterReports@epa.gov</u> within ten (10) days of posting the test report.

If you have any questions concerning this letter, please contact Rafael Sanchez of my staff at (202) 564-7028 or via email at sanchez.rafael@epa.gov.

Sincerel

dward J. Messina, L

Monitoring, Assistance, and Media Programs Division

Office of Compliance

Model: Northstar A

Hearth and Home Technologies (Aladdin Hearth Products)

1445 North Highway Colville, WA 99114

Certification Test Report

Hearth and Home Technologies (Aladdin Hearth Products)

Built-In Room Heater Model: Northstar A Also for

Constitution

Prepared for:

Hearth and Home Technologies (Aladdin Hearth Products)

1445 North Highway Colville, WA 99114

Prepared by:

OMNI-Test Laboratories, Inc.

5465 SW Western Avenue, Suite G

Beaverton, Oregon 97005

(503) 643-3788

Test Period:

December 18, 2002 - December 20, 2002

Report Date:

January 2003

Project Number:

061-S-50-3

All data and information contained in this report are confidential and proprietary to Hearth and Home Technologies (Aladdin Hearth Products). Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from Hearth and Home Technologies (Aladdin Hearth Products) and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. (O-TL) name, logo, or registered (O-TL) mark is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

OMNI-Test Laboratories, Inc.

i of iv

Certification Test Report dated 1/17/03: \\Omni02\users\Testing\Aladdin\061-S-50-3 Aladdin HNG Northstar\061-S-50-3.doc

AUTHORIZED SIGNATORIES

This report has been reviewed and approved by the following authorized signatories.

Paul E. Tiegs, President

OMNI-Test Laboratories Inc.

Richard C. Sparwasser, Vice President

OMNI-Test Laboratories, Inc.

Hearth and Home Technologies (Aladdin Hearth Products) Model: Northstar A

Test Dates: December 18, 2002 – December 20, 2002

INTRODUCTION

Hearth and Home Technologies (Aladdin Hearth Products) retained OMNI-Test Laboratories, Inc. (O-TL) to perform U.S. Environmental Protection Agency (EPA) certification testing on the model Northstar A. The Northstar A is a non-catalytic, built-in room heater. The firebox is constructed of mild steel. The usable firebox volume was measured to be 2.70 cubic feet. The room heater is vented through an 8" diameter flue collar located at the top of the unit.

The testing was performed at the Hearth and Home Technologies (Aladdin Hearth Products) laboratory in Colville, Washington. The tested unit was in good condition and assigned tracking number OMNI ID #419 on December 18, 2002. O-TL representative, Bruce Davis, conducted the certification testing and completed all testing by December 20, 2002. The EPA was notified of the testing dates in a letter dated December 18, 2002. A testing contract, including provisions for Random Compliance Audit (RCA) testing, has been signed by Daniel S. Henry of Hearth and Home Technologies (Aladdin Hearth Products) and is on file at O-TL.

The Northstar A room heater was tested in accordance with the U.S. EPA 40 CFR Part 60, Subpart AAA – Standard of Performance for Residential Wood Heaters (Appendix A, Methods 28 and 5H). Particulate emissions were measured using a Method 5H sampling train consisting of a heated front filter, an iced impinger train, and a rear filter. The weighted average emissions of the four test runs indicate a particulate emission level of 3.25 grams per hour. Test runs were conducted in each of three burn rate categories (0.80-1.25 kg/hr, 1.25-1.90 kg/hr, and maximum). Emissions for each of their individual test runs did not exceed the cap. The Northstar A results are within the emission limit of 7.5 grams per hour for non-catalytic affected facilities manufactured on or after July 1, 1990, or sold at retail on or after July 1, 1992.

The wood heater was sealed after completion of testing in compliance with the EPA regulation as follows:

- "DO NOT TAMPER" labels were placed on the door and all other openings;
- Plastic material sealed with "DO NOT TAMPER" labels and tape was wrapped around the unit;
- The unit was sealed in a wood box constructed for the unit and secured with steel banding; and
- "DO NOT TAMPER" labels were placed on all outer surfaces of the box.

This report is organized in accordance with the EPA-recommended outline and is summarized in the Table of Contents immediately preceding this report.

Table 1.1 - Particulate Emissions

Run	Burn Rate (kg/hr dry)	Method 5H Emissions (g/hr)
1	0.94	1.69
2 .	1.13	1.73
3	4.25	8.12
4	1.34 ssion average of four test runs:	2.31

Table 1.2 - Test Facility Conditions

		Temperature Barometric Pressure (°F) (in Hg)				Air Ve (ft/n	
Run	Before	After	Before	After	Before	After	
1	74	72	28.46	28.53	<50	<50	
2	77	73	28.59	28.45	<50	<50	
3	78	82	28.32	28.32	<50	<50	
4	68	81	28.32	28.35	<50	<50	

Model: Northstar A

Hearth and Home Technologies (Aladdin Hearth Products)

1445 North Highway Colville, WA 99114

Table 1.3.1 - Fuel Measurement and Crib Description Summary - PRETEST

Run	Pretest Fuel Weight (Starting weight)	Pretest Moisture (Dry basis - %)	Coal Bed Weight (lb)
1	4.5	19.1	4.1
2	4.8	20.4	4.3
3	21.2	22.0	3.6
4	7.0	21.0	4.4

Table 1.3.2 - Fuel Measurement and Crib Description Summary - TEST

Run	Test Fuel Wet Basis (lb)	Firebox Volume (ft ³)	Fuel Loading Density Wet Basis (lb/ft³)	Fuel Moisture Content Dry (%)	Plece Length (in)	2x4s Used	4x4s Used
1	17.4	2.70	6.44	20.0	20	3	2
2	17.4	2.70	6.44	19.8	20	3	2
3	17.8	2.70	6.59	20.1	20	3	2
4	18.3	2.70	6.78	19.8	20	3	2

Model: Northstar A Hearth and Home Technologies (Aladdin Hearth Products)

1445 North Highway Colville, WA 99114

Table 1.4 - Dilution Tunnel Gas Measurements and Sampling Data Summary

		Average Dilution Tunnel Gas Measurements				
Run	Length of Test (min)	Velocity (ft/sec)	Flow Rate (dscf/min)	Temp (°F)		
1	420	14.4	145.8	101.42		
2	350	15.1	152.0	107.31		
3	95	16.3	138.4	205.80		
4	310	14.3	139.9	118.09		

Table 1.5 - Heater Operation Data (Average Temperature Data)

Run	Beginning Surface Temp Average ^a	Ending Surface Temp Average³	Surface Delta T ^b
1	243	140	10
2	247	190	57
3	505	509	5
4	316	233	83
a. All ter	mperatures are in degrees F.	200	1 00

b. Surface Delta T represents the difference between beginning and ending average surface temperature.

Table 1.6 - Pretest Configuration

Run	Combustion Air (in)	Fuel Added	Fuel Removed	Time (min)
1	fully closed	4.5 lbs. at start; no addition; coal bed 4.1 lbs.	N/A	90
2	0.125" open	4.8 lbs. at start; no addition; coal bed 4.3 lbs.	N/A	80
3	fully open	21.2 lbs. at start; no addition; coal bed 3.6 lbs.	N/A	75
4	0.5" open	7.0 lbs. at start; no addition; coal bed 4.4 lbs.	0.6 lbs.	70

Table 1.7 - Run Data

Run	Average Dry Burn Rate (kg/hr)	Initial (Induced) Draft (in H ₂ O)	Primary Air Setting (in)	Run Time (min)	Average Draft (in H₂O)
1	0.94	0	fully closed	420	-0.02
2	1.13	. 0	0.125" open	350	-0.02
3	4.25	0	fully open	95	-0.07
4	1.34	0	0.5" open	310	-0.03

Table 1.8 - Test Configuration

Run	Five-Minute Startup	Combustion Air
	Bypass: N/A.	
	Fuel Loading: Loaded by 32 seconds.	
	Door: Closed by 40 seconds.	
	Primary Air: Fully open for 4 minutes 55 seconds, then set to test	
- 1	setting.	
	Other: When the air slide is fully open, it activates a two hour timer	•
1	that allows additional air into the unit until the timer closes it. The air	
	slide was fully opened for this run. Secondary: Fixed.	
	Tertiary: N/A.	
1.		fully alogad
	Bypass: N/A.	fully closed
	Fuel Loading: Loaded by 30 seconds.	
İ	Door: Closed by 50 seconds.	
	Primary Air: Fully open for 4 minutes 55 seconds, then set to test	
	setting.	
	Other: Air slide fully opened, which activated the two-hour timer.	•
	Secondary: Fixed.	
	Tertiary: N/A.	
2	Fan: Off for first 30 minutes, then set to high.	0.125" open
ŀ	Bypass: N/A.	
	Fuel Loading: Loaded by 20 seconds.	
	Door: Closed by 26 seconds. Primary Air: Fully open.	
	Other: Air slide fully opened, which activated the two-hour timer.	
	Secondary: Fixed.	
	Tertiary: N/A.	
3	Fan: On high.	fully open
	Bypass: N/A.	idily opoli
1	Fuel Loading: Loaded by 30 seconds.	
	Door: Closed by 43 seconds.	
İ	Primary Air: Fully open for 4 minutes 55 seconds, then set to test	
	setting.	
	Other: Air slide fully opened, which activated the two-hour timer.	
	Secondary: Fixed.	
	Tertiary: N/A.	
4	Fan: Off for first 30 minutes, then set to high.	0.5" open

Colville, WA 99114

TEST RESULTS AND DISCUSSION

A total of four test runs were conducted in the following categories: two in the 0.80 to 1.25 kg/hr dry category; one in the 1.26 to 1.90 kg/hr dry category; and one at maximum.

During test run number one at 391 minutes, the fuel-loading door was opened to reposition remaining fuel pieces. This was done following three consecutive data points with no fuel weight loss. Less than 15 seconds elapsed between opening and closing the fuel-loading door.

During test run number two at 291 minutes, the fuel-loading door was opened to reposition remaining fuel pieces. This was done following a 10 minute time period with no fuel weight loss. Less than 15 seconds elapsed between opening and closing the fuel-loading door.

The weighted particulate emission level was measured to be 3.25 grams per hour.

The proportionality results for all four test runs were acceptable. Quality check results for each test run are presented Section 2 of this report.

APPLIANCE DESCRIPTION

Appliance Manufacturer: Hearth and Home Technologies (Aladdin Hearth Products)

Room Heater Model: Northstar A

Type: Built-in room heater

WOOD HEATER DESCRIPTION:

Materials of Construction: The entire unit is constructed of mild steel.

Air Introduction System: Air enters the firebox through an opening located at the front of the appliance above the fuel-loading door. Secondary air enters the appliance through the bottom/back and is channeled internally to both sides of the firebox supplying three 7/8" outer diameter tubes.

Combustion Control Mechanisms: The combustion air inlet is controlled by a handle located above the fuel-loading door in the center of the appliance.

Combustor: NA.

Internal Baffles: A ceramic fiber baffle is mounted in the upper portion of the firebox. The flame path is forced to the front of the firebox where it travels up through the opening between the baffle and primary air manifold.

Other Features: An automatic combustion air control is located below the fuel-loading door. This air is activated when the manual combustion air slide is fully open, which causes a second combustion air orifice to open. Activation of this second air source sets a mechanical timer that holds the air control open until two hours have elapsed. The manual air control can be set to any position during the two hour time period, but acts independently of the timed air source.

Each appliance is produced with an air circulation blower as standard equipment.

Flue Outlet: The 8" diameter flue outlet is located in the top of the unit.

WOOD HEATER OPERATING INSTRUCTIONS

Specific written instructions: See Section 4 of this report. All markings and instruction materials were reviewed for content prior to printing.

OMNI-Test Laboratories, Inc.
1-9 of 1-9
Certification Test Report dated 1/17/03: \\Onni02\users\Testing\Aladdin\061-S-50-3 Aladdin HNG Northstar\061-S-50-3.doc

EPA Weighted Average Emissions EPA Method 28

Stove Model: Northstar a Stove Type: Non-Catalytic Stove Test Dates: 12/18/02 - 12/20/02

Project Number: 061-S-50-3

Weighted Average Tracking Number: 419 (g/hr) 3.25 Signature/Date: 3/

Run #	1	
Burn Rate (dry kg/h	r) 0.94	
Catagory	2	·
Overall Efficiency (%) 63%	
Emissions (g/hr)	1.69	
Cap (g/hr)	15	
Weighting Factor	0.478	28.58%
Heat Output (BTU/)	ır) - 11359	

Burn Rate (dry kg/hr)	1.13		
Catagory	2		
Overall Efficiency (%)	63%		
Emissions (g/hr)	1.73	į	-
Cap (g/hr)	15		
Weighting Factor	0.325		19,42%
Heat Output (BTU/hr)	13654		

Run#

Run #	4	
Burn Rate (dry kg/hr)	1.34	
Catagory	3	
Overall Efficiency (%)	63%	
Emissions (g/hr)	2.31	
Cap (g/hr)	15	
Weighting Factor	0.517	30.91%
Heat Output (BTU/hr)	16192	

3	
4.25	•
4	
63%	
8.12	
18	
0.353	21.09%
51355	
	4 63% 8.12 18 0.353

Hearth and Home Technologies (Aladdin Hearth Products) Model: Northstar A

Run 1 - Fuel

Run 1 - Newly Loaded Room Heater

Run 2 - Fuel

Run 2 - Newly Loaded Room Heater

Hearth and Home Technologies (Aladdin Hearth Products) Model: Northstar A

Run 3 - Fuel

Run 3 - Newly Loaded Room Heater

Run 4 - Fuel

Run 4 - Newly Loaded Room Heater

Wood Heater Test Data EPA Method 5H

Run Number 1		
Warsdacturer	Hearth & Home Tech	Samois Rata Control Voidule Numbe
Stone World, Tractory teumber	Northstar a	Test Verer y*
Store Type tel most or sever!	ncat	Onfice 3H &
Spire view number	06 t - S-50-3	Pitot Turie Sci
T u Date	18-0÷c-22	teraja Baromons eraksura.
Tive Start (Tiv	14 45	 Amerika je Fulki Whatisha ishi basa i i
1	10	C Whit Ellu omen: Numbers
Autonomy mental minutes:	420	
The Trues		_

	 ,,	IAIC	 •
21			
0.992			
1.587			 _
0 99			
29 49			
20 33			 _

			D	ilusion Tunnel Ve	locity Traverse D	ata .				Dilution Tunn Flow
	PL1	Pt.2	PL3	PL4	P1.5	PL6	PL7	PL8		Initial
inita iP	0.038	0.044	3 348	0 038	0.040	0.046	5.048	0 332	7420	145.8
r-tial Temp	96	95	95	96	96	96	95	36	oF	sct/minute

		Initial/Ass	umed Values	
Dikatoni	ווסת-פישי איני	28 58	Amorant CO2 (%)	0.034
Turnel	-20 'si	4 00	Freierick) maa Sambang Rafe	0 24

Flue Gas	
Imanijer fauld, Vicity)	130 3
Volume of Water Vacor, Vw/std) (ft3)	8,14
Mossure Content, Bws	0.058

- 504 38 CM 54 G	-			_																							,
			Ра	tuculate Samplii	ng System	- :			Fuel	Weight		Stove	Flue-Gas Con	ditions					Stove Temp	eratures (oF)				Dilution	Tunnel	<u></u> '	Laboratory
Elapsed Tana	can't in Meter Mouthing with	Sample Rate (cfm)	Crefice dH (inches we)	Propertional Rate (%),	Lay Tas Motor Ten permare F	Sauge Train Vacuum piches Hg i	=onjeri∄st Temperature Ej	Per deg Temperature Le	man Veneling Other	Weight Change (lbs)	नार्थाः विद्यानसम्बद्धाः संदर्भागाः	02/44	2/31	(41) % (Тепоретычне «F»	Air to Feel Ratio (lb/b)	Factor Dop	Figure 2 de gran.	Ference Back	Firebox Left	e ny nejvi Kražni ne n	Average Sorface Temperature (F)	ित अन्द्रा संज्ञात् स्टेस	gir a magta Seculiar distas Sar	Ni era - Melvinieri Heralieni Na	(9)2/4)	Suesceed Tension du
	531.300		0.15		. 84	0	86	238	17.4		-0.011	17.7	2.5	0 77	134	26.4	204	249	244	209	310	243	96	0.042	-248	0.210	74
10	533.380	0.258	0.22	100.0	36	2	58	237	16.5	-0.9	-0 030	17.8	2.5	0.40	196	28.1	302	249	241	245	328	273	107	0.042	-0.48	0.260	72
20	536 390	0.301	9.33	97.4	88	2	57	231	15.8	-0.7	-0 032	16.7	3.9	0.43	195	21.5	332	244	237	247	33)	278	104	0 042	-0.48	0.450	73
30	540.450	0.358	0.39	95.8	91	2	56	231	142	-1.6	-0 051	12.7	3.2	0.44	292	12.2	561	242	233	254	322	324	125	0.042	-0.48	1.010	72
40	544,330	0.388	0.50	96.4	Se 94	2	56	230	12.3	1.9	-0.056	12.2	8.5	0.28	338	12.0	648	239	236	221	254	328	136	0.042	-0.48	1.190	73
50	548.750	0.442	0.53	97.1	. 3. 97	2	65	234	10,4	-1.9	-0.059	11.5	10.2	0.29	359	10.3	700	253	254	238	282	345	141	0.042	0.48	1,470	74
80	553.250	0.450	0.56	96.2	-3 98	2	65	238	8.8	-1.6	-0.055	13.3	7.6	0.31	340	13.2	674	265	270	252	28	348	146	0.042	-0.48	1.140	75
70	557.790	0.454	0,41	94.5	t. 99	2	- 65	230	7.5	-1.3	-0.058	12.3	8.8	0.31	329	11.7	644	278	287	273	281	353	132	0.042	-0.48	1,120	75
80	561.850	0.406	0.48	96.9	98	2	66	233	5.0	-1.5	-0 054	- 11,4	9.2	0.32	345	11.2	705	- 294	309	301	29-	379	135	0.042	-0.48	1.250	75
90	566 170	0.432	0.48	98.1	98	2	56	230	4.6	-1.4	-0.052	12.1	8.2	0.21	342	12.5	712	310	330	326	283	393	134	0 042	-0.48	1.130	75
100	570.500	0.433	0.53	98.1	gar 98	2	55	233	3.7	-0.9	-0.051	14.6	53	0.21	315	15.0	841	329	350	341	256	391	126	0.042.	-0.48	0.950	75
110	574.980	0.448	0.43	97.3	99	2	67	235	3.1	-0.6	-0 042	14.8	5.0	0.37	251	18.2	513	342	367	347	309	376	112	0.042	-0.48	0.650	74
120	579.250	0.427	0.32	102.8	99	2	57	234	2.8	-0.3	-0.031	15.5	4.4 -	0.99	224	18.1	453	346	369	- 341	310	364	104	0.042	-0.48	0.500	√ 74
130	582.870	0.362	0.22	100.3	98	2	56	235	26	-0.2	-0.030	14.9	4.5	1:33	200	16.7	396	343	363	325 ·	310	347	29	0 042	-0.48	0.440	. 67
140	586,180	0.331	0.15	109.0	97	2	66	230	2.5	-0.1	0.021	15.5	3.9	1,53	174	17.6	349	337	355	309	304	331	95	0.042	0.48	0.340	68
150	588,980	0.290	0.18	103.2	97	2	65	238	: 24	-0.1	-0.020	15.4	3.7	1.67	160	18.0	308	321	341	289	295	311	93	- '0.042 (-0.48	€0.320	√a: 68 ≟
160	591.770	0.279	0.12	103.8	g) , 97	2	65	239	2.2	-0.2	0.020	14.8	4.8	1.57	154	15.5	294	309	330	277	280	300	93	0.042 📜		0.340	69
170	594.010	0.224	0.11	101.2	j. 97	2	66	238	2.1	-0.1	-0.018	14.8	4.5	1.74	148	16.0	282	297	317	, 265	281	288	94	- 0.042 🟺	-0.48	0.310	70.70
180	596.330	0.232	0.13	108.4	98	: 2	66	237	1.9	-0.2	-0.018	15.4	4.0	1.60	145	17.5	270	285	303	253	273	277	96 🔆	0.042		0.300	5 70
190	596.750	0.242	0.11	104.0	· 2 99	2	68	238	1.8	0.1	-0.012	15.1	4.1	1.69	145	: 17.0	260	274	290	245	272	258	.98	0.042	0.48	0.290	達 71 /
200	501.080	0.233	0.11	108.3	71 100	2	65	231	1.7	-0.1	-0.012	153	3.9	1.72	144	. 17.4	252	265	278	235	267	259	98	0.042	0.48	₹ 0.280 ,45	<i>₹</i> ,75
210	603,130	0.205	0.11	92.7	101 ·	2	65	230	1:6	-0.1	-0.011	15.5	3.9	e 214.51	142	18.0	247	258	269	228	255	253	98	0.042	.;-0.48 <i>∑</i> .	√ 0.270	78
220	805.430	0.230	0.10	107.8	33° 101	2	65	228	1.5	-0.1	-0.011	15.7	3.7	. 1.61	140	18.2	241	251	261	221	262	247	98 '	0.042	-0.48	0.250	78
230	507.610	0.218	0.11	105.5	- 101	2 :	56	234	- 14 E	0.1	0.011	15.2	(3.9 ↔	1.72	140	: 17,4	239	245	253	. 214	258	242	98	0.042	-0.48	₀ , 0.270	. 78
240	609.850	0.224	0.10	104.5	_{हेन्} 101	2	66	235	1.3	-0.1	-0.011	15.5	4.0	1.79	140	17.0	237	239	246	207	₹ 254	237	্ 97 ∰.১,	0.042	-0.48	∯ 0.270	. 78
250	612.000	0.215	0.10	102.7	101	2	65	235	12	-0.1	-0.010	15.3	4.1.	1.84	139	16.6	235	235	238 😳	201	252	232	98	0.042	-0.48	0.270	79
260	\$14.18Q	0.218	0.11	106.6	100	2	65	235	1.1	-0.1	-0.013	15.5	3.9	1,65	138	17.6	233	231	229	194	254	223	92	0.042	-0,48	, 0.270	78
270	516.370	0.219	0.11	101,4	2 gr 99	2	65	237	1.0	0.1	-0.012	16.0	3.6	1.58	136	- :18.6	229	228	221	188	256	224	90	0.042	-0.48	1 0.250	76
280	818.570	0.220	0.09	102.6	99	2	56	234	0.3	0.1	-0.011	16.0	3.5	1.57	134	18.9	220	224	212	182	253	218	93	0.042	-0.48	0 230	75
290	520 520	0.205	0.06	102.6	a 98	2	56	237	· 0.8	01	-0.010	16.4	3.3	1.56	133	`- 19,5	215	221	206	177	25 1	214 -	93	0.042	-0.48	0.210	75
300	522.610	0.199	0.05	104.5	. 99	2	86	238	0.7	-0.1	-0.010	16.4	3.2	1.62	131	19,7	208	215	199	172	248	208	94	0.042	0.48	0.200	75
310	624,580	0.197	0.06	106.0	99	2	. 84	235	α.ε	-0.1	-0.010	16.7	3.0	1.40	128	21.1	200	210	191	167	2n.	202	92	.0.025	-0.48	; 0,190	75
320	526.560	0.198	0.06	105.8	99	2	54	238	0.5	-0.1	-0.010	16.9	2.8	1.47	126	21.6	192	203	184	161	274	195	92 7.**	0.042	-0.48	. Q.180	. 75
330	628.540	0.198	0.07	105.3	99	2	65	241	0.4	-0.1	-0.010	17.2	2.6	1.34	122	23.0	183	195	176	155	22	186	1. 91 🧀	0.042	-048	0.160	75
340	630.450	0.191	0.06	106.8	98	2	55	235	0.4	0.0	-0.010	17.5	· 24	1.20	120	24.6	178	191	173	152	214	152	90	0.042	0.48	0.1*0	75
350	632.125	0.167	0.05	104.5	98	2	65	237	0.4	0.0	-0.010	17.6	24	1.25	115	24.4	170	184	170	.7 149 🎊	205	176	90, NG	- 0.042 :	7-0.48	0.140	+, 75
360	633 770	0.164	0.05	102.5	97	1 2	65	240	0.3	-0,1	0.009	17.7	2.3	1,11	112	25.6	162	: 176	167	146	156	169	89	0.042	0.48	0.130	75

Control No. P-SSI-0004 (SH Emission Calcutations).xls, Effective Date: 3/14/2002

Page 1 or

Run 1a.xis

2-482-42

over Test Laboratories

Wood Heater Test Data EPA Method 5H

Sample Rate Control Module Number	21
Tast Merer y	0.992
Diritor only	1.587
Prot Ture Co	0.99
Average Barriering Pressure	23.49
Average Fuer Module Ingrises	22.00

	ш,	•	IAIC	HIL	,
21					
0 992					_
1 587					
o 99				-	
23 49					
20 63					

			ation Tunnel Vel	ocity Traverse Ca	5 48			and the state of the	Diuson tunn Fow Initial
	Pt.1	PL2	Pt.4	Pt.5	PL6	Pt.7	PL8	7120	145.8
Instar pP	0 038	0.244	0 038	0.010	3746	0.018	0 032	oF	scimenuti
Inital Temp	96	98	95	95	36	<u>↓</u> ≆;	98	<u> </u>	J

		Initial/Assur	
Diurion	WW ((b)1b-mol)	28.56	Arrthent CC2 (%) 0.034
Turmel	1-20 (%)	4 00	Braightest Intial Sampling Flate 0.24

Flue Gas	
	150 a
Impinger Fauld, Vfc (g)	6.14
Volume of Water Vapor, Vw(std) (ft3)	0.056
Moisture Content, Bws	

Tab	Samering	T-a mr.198;			_					·				Post-Test L	eak Check	005 B 5	cm 0 Hg			(oF)				Dilution T	Tunnel		Laboratory
			1	Par	uculate Sampli	ng System				Fuel	Weight	I	Stoom	Stions			,	 	Stove Tempe			Average Surface	,	ap Valenty	State Pressure	organ .	Andre-4
Especi 1	ime	Try clas Meter Rending (el)	Sample Rase (cfm)	Onfice dH (inches eq)	Proportional Rate (%)	Ory (so Meter Temperature (f	Vacuum on the	1		Scale Reading	Weight Change (lbs)	Emili Pressure	02.41	cora	Temperature (b)	Air to Fuel Ratio (Ib/Ib)	Finehox Top	Eurobose Bestesti	Times Buck	Fints (1ch	186	Temperature (F)	l'emperature (F)	0.042	-0,48	0 120	75
370		\$35 280	0.151	0.06	99.6	97	2	96	238	03	0.0	-0 ocs	18 1	1.00	108	25.1	158	169	162	137	177	155	8.5	0 042	-0.48	0.110	73
380		636,300	0.152	0.07	97.1	97	2	66	237	03	0.0	-0 008	18.5	0.97	105	31.2	144	161	157	132	169	148	84	0.042	0.48	0 090	72
390		538.430	0.163	0.06	93.6	36	2	56	239	0.3	0.0	-0.007	19.1	0.72	101	35,4	135	154	148	127	162	143	82	0.042	-0.48	0.140	71
400	<u>.</u>	640.070	0.164	0.05	103,5	95	2	66	239	0.2	-0.1	-0.007	17.3	2.13	99	19.6	131	147	141	124	157	141	81	0.042	0.48	0.190	72
410		641,631	0.156	0.06	109,4	94	2	66	230	0.1	-0.1	-0.008	16.0	2.37	102	17.5	141	140	139	123	159	140	. 81	0.042	-0.48		Average
420		643.165	0.153	0.07	92.9	94	2	57	229	0.0	-0.1	-0.009	16.2	2.28	104	17.7	145	138		Avera/36	Ave/aga	Difference in (Beg. End)	Average Dilution	Average	Average Dilution Tunnel	Average Daution Tunnel	Laboratory
Total Samplin (minute:		Total Sample Volume (cf)	Average Sampling Rate (clm)	Average Onlice	Proportional	Average Veter Temp (oF)	Maximum Sample *rain Vacuum	Average Impiriger Exit Temperature	Averaga Hat Box intenor	Total Fuel Burned (lbs)	Average Sample	Average Flue Orafi (inches	1 Average	Average Carbon ride Monoxidi	Average F€		Average Firebox TopTemp (o	Firebox Bottor	n Firebox 33cx	Firebox Left Side Temp (oF)	Side Temp (off)	Stove Surface Temps (oF)	°I (ΛΕ)	JP (inches wc)	(inches MC)	CO2 (%)	(oF)
			(cim)	 	Rate (%)		(inches 🗝)	(F)	Temp (¢ř)	purned (IDS)	Interval Weight Change	wc)	Crygen (% O2)0	(%60)		1 150		43 MA	245,42	220 72	257 #3	10	101.42	0.04	0.18	3.42	
420	1	111 365	0 266	0:3	101 65	- 37 L	200	ا عدمها	221.21	47.0			1	_ ,21	177 36	19.33	319 60	~ · · · ·	1						 *** *********************************	5	

Wood Heater Calculation Data EPA Method 5H

(F) (F)	1
IN INCOME	Hearth & Home Tech
gracking No.	
Jest Date	10 Cap.72
A 100	AS 1 C 50.3

Burn Rate (dry kg/hour) =	0.94
Emission Rate (grams/hour) -	1.69

ter. When using the CO2 tracer-gas method, I/Of (by tracer gas) = \$

me (minutes)	Dilution Tunnel Velocity (feet/second actual)	Fo (1 00 to 1,12)	Of by carbon balance (scl/minute)	Qt-new (scVminute)	Of by tracer gas (scl/minute)	1/Of by tracer gas (Si)	Volume Sampled (dscl)	Si * Volume Sampled	Proportional Sample Rate	dH new
MANAGE AND AND AND AND AND AND AND AND AND AND		数数型加速率	and the	1458	10.4	0.096		200		
100	14.5	1,10	28.4	145 1	12.8	0 078	2.358	0.227	100.0	0.222
20	14,4	1.02	16 9	145 5	15.7	0.064	2.751	0.215	97.4	0.332
30	14.7	0.97	21.9	1427	17 1	0.059	3.243	0.207	95.8	0.392
740	14.9	1.01	25.5	141.5	19.3	0.052	3.516	0.206	96.4	0.500
50\	14.9	0.91	21.9	140.9	19.9	0.050	3.985	0.206	97.1	0.528
60.	15.0	0.98	23.6	140.3	20.5	0.049	4.035	0.203	96.2	0.560
70	14.8	0.96	17.0	142.0	17.6	0.057	4.064	0.198	94.8	0.411
80	14.8	1.01	18.9	141.6	18.9	0.053	3.627	0.206	98.9	0.477
90	14.8	1.06	19.6	141,7	19.0	0.053	3.866	0.204	98.1	0.482
100	14.7	1.03	15.1	142.7	19.9	0.050	3.875	0.204	98.1	0.527
)(0 ·	14.6	1.17	12.2	144,4	17 9	0.056	4.010	0.201	97.3	0.426
120	14.4	1.09	6.1	145.5	15.5	0.064	3.814	0.213	102.6	0.320
[30]	14.4	1.12	3.8	146,1	13.0	0.077	3.233	0.208	100.3	0.225
140	14.3	1.12	2.0	145.5	11.6	0.086	2.961	0.228	109.0	0.180
[50]	14.3	1.18	2.0	146.9	11.5	0.087	2.509	0.216	103.2	0.175
(60	14.3	1.07	3.5	146.9	9.4	0.106	2.500	0.218	103.8	0.119
10	14.3	1.12	1.6	.146.8	9,1	0.110	2.007	0.213	101.2	0.110
80	14.3	1.13	3.9	146.5	. 9.8	0.102	2.078	0.229	108.4	0.128
190	14.4	1.15	1.9	146,3	9.2	0,109	2.164	0.220	104.0	0.113
200	14.4	1.15	2.0	146.3	9.3	0.107	2.080	0.226	106.3	0.105
210	14.4	1.12	2.0	146.3	8.9	0.112	1.827	0.196	92.7	0.105
220	14.4	1.13	2.1	146.3	8.6	0.116	2.046 1.939	0.229	107.8 105.6	0.105
200	14,4	1.17	2.0	146.3	8.9	0.112	1.939	0.223	103.6	0.100
210	14.4	1.09	1.9	146,4	8.7	0.115	1.912	0.220	104.5	0.095
250 260	14.4	1,10	1.9	145.3	8.5		1.939	0.228	106.6	0.107
270.	14.3	1.12	2.0	147.0	9.0	0.111	1.951	0.228	101.4	0.106
280	14.3	1.10	2.1	147.3	8.9	0.120	1.964	0.217	102.6	0.092
290	14.3	1.12			8.3 7.9	0.126	1.830	0.220	102.5	0.083
S00	14.3	1 09	22	146,9	7.7	0.130	1.779	0.225	104.5	0.079
310	14.3	1.10	2.4	147,0	7.7	0.130	1.758	0.228	106,0	0.079
80	14.3	1.11		147.0	7.8	0.129	1.767	0.228	105.8	0.080
830	14.3	1,11	2.4	147.2	7.2	0.138	1.767	0.228	105.3	0.069
840	14.3		0.0	147.3	6.6	0.152	1.705	0.236	108.8	0.058
880	14.3	1,11	0.0	147.3	6.5	0.152	1.498	0.227	104.5	0.058
30	14.3	1.10	2.9	147.4	6.0	0.150	1,471	0.223	102.5	0.052
570	14.2	1,10	0.0	147.5	6.5	0.155	1.352	0.217	99.6	0.056
060	14.2	1,10	0.0	148.0	7.2	0.139	1.361	0.211	97.1	0.069
890	14.2	1.07	0.0	148.1	6.5	0.153	1,460	0.203	93.8	0.057
(0)	14.2	0.97	2.2	148,4	5.9	0.159	1.472	0.225	103.5	0.047
II0	14.2	1.09	2.0	148.5	6.8	0.146	1.403	0.238	109.4	0.063
(8)	14.2	1.07	2.0	148.5	7.3	0.137	1,381	0.202	92.9	0.072
1	1 17-2	1		1	· ··-		1			
Totals	14.4	1.08	6.8	145.8	11.1	0.105	2.387	10.00 A	101,6	0.192
Sil.	L	1					4	The state of the state of the state of	*	

Woodstove	Туре		
•	rhc>1=cat,2=rxcat, 3=pellet	2	
4	EPA's Hydrocarbon Constant (%)	1.32	
Fuel Data	· ·		
•	Fest Charge (as fired lbs)	17.4	
	Average Moisture (% dry basis)	20.03	
	Average Moisture (% wet basis)	16.69	
Run Parame	itors		
	DGM initial reading (cf)	531.300	
1	DGM final reading (d)	643.165	
	Pb (inches Hg)	28.49	
	Tm (avg oF)	97.14	
	dH (avg inches wc)	0.19	
•	Vm (sd)	100,201	
. (Of by carbon balance (avg dscl/minute)	6.79	
Analytical D	eta		
į	Probe-Front Wash (mg)	34 8	
	Front Filter (mg)	55 6	
	mpinger PM (mg)	2440	
	Back Filter (mg)	80.6	
•	Total Weight (mg)	415.0	
Emission R	esulte		
į	Cs (g/dsd)	0.0041	
1	ER (g/hour)	1.69	

Final Laboratory Report - Method 5H Dilution Tunnel Particulate Calculations

Client Name:	Aladdin Hearth Products	Equipment N	Jumbers:			Run No.:	1.
Model:	_	_				Date:	12/18/02
Project No.:	061-S-50-3	· .					
Fracking No.:		•				- 	
PARTICULAT	E COMPONENTS	÷					
	Sample Component	Reagent	Filter ≠ or		v	Veights	
			Volume, ml	Final, mg	Tare, mg	Blank, mg/ml	Particulate, mg
	A. Front filter catch	Filter	М139	649.8	594.2	•	55.6
	B. Rear filter catch	Filter	C826	199.7	119.1		80.6
C. Rinse of	probe and filter assembly (FRONT)	Acetone	120	100469.9	100435.1	0.0000	34.8
D	Rinse of Impinger Set	Distilled Water	325	109913.8	109819.8	0.0000	94.0

150

220

Dichloromethane

Acetone

103902.7

104306.9

103852.1

104207.5

Total Particulate, mg:

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Rinse of probe and filter assembly (FRONT)	(Final, mg - Tare, mg) - (Blank, mg/ml x-Volume, ml) = Particulate, mg
D. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
E. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg ml x Volume, ml) = Particulate, mg
F. Rinse of filter assembly and gas train (BACK)	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg

CONDENSED WATER	Weights							
IMPINGERS	Final, g	Initial, g	Net, g					
t	731.1	640.5	90.6					
2	582,8	566.7	16.1					
3	548.6	546.7	1.9					
4	851.7	830.0	21.7					
		TOTAL, g:	130.3					

0.0000

0.0000

50.6

99.4

415.0

E. Rinse of Impinger Set

F. Rinse of filter assembly and gas train (BACK)

EPA Method 4 Analysis Worksheet

client/Locatio	Client/Location: Aladdin Nothshae A Project #: 061-5-50-3											
Test Date: 12-18-02												
Sample Train #: A Assembled by: 60 Cleaned by: 02												
		Filte	er Identifi	cation	· · · · · · · · · · · · · · · · · · ·							
Front Filter	1st Filter # 🖊	1139	Ва	ck Filter 1s	st Filter # <u>C82</u> 6							
2nd Filter#_			2n	d Filter#								
3rd Filter#			3r	1 Filter #								
	G	ravimetric An	alysis—C	Condensed Wa	ter	alans .						
Impingers:	1	2	3	4	Total	Ву						
Final:	731.1	5828	548.6	851.	2-12-5	e de la companya de l						
Initial:	640.5	566.7	546	7 830.	d to the							
Net Weight (grams):	90.0	16.1	1.9	21.	7 130.3							

STOVE TEMPERATURE TEST DATA - METHOD 5G

Page / of /

6/7	
Tracking #:	
Project #: 76/-5-50-3	
Northshar A	
Aladd.~	
Client/Model:	

Date: 12-18-02

Test Crew:

Run #:

OMNI Equipment ID #:

r		T	#X	Τ		·	F	<u> </u>		T	778	T	<u>}</u>	-				<u> </u>	T	<u></u>	—	 -	1	—
	\ }		Catalyst	₹ 3	_				-				-			_			-					-
Actual	Coal Bed: %.		Flue	266	7.00	757	181	130	158	3/1/	142	72/	1,22	()										
			Bottom	553	505	723	444	413	397	37.2	34.5	379	2,,	(),							,			
	5-43	URES (of	Back	<i>श</i> र ८	407	378	339	305	292	890	245	226	110											
	Range: 3.5 - 4.3	TEMPERATURES (OF	Right	53/	454	47.7	386	349	33/	308	787	26.3	770	2						-				
	Ø	ŢE	Left	532	466	437	394	355	338	31/	725	266	150	2										
	0 = 0	`	Top	248	3.58	36.2	319	287	265	242	228	216	204											
Coal Bed:	Data:		Ambient	18	78	st	7.7	76	75	75	74	44	ht											
			Draft	-:032	-022	021	-021	-020	-020	-:015	-013	012	110-											
		Delta	Weight		0.0	0.0	1.0	0.7	0.0	0.1	0.0	0.1	0.0											
X u		Fuel	Weight	4.5	4.5	4.5	4.4	4.3	4.3	4.2	7.7	7.7	7.7											
Preburn	Test		Time	0	2	20	30	40	20	09	70	80	90	00	10	20	30	40	50	09	70	80	06	AVG

Technician signature: 💪

Date: 1-2-3

FUEL DATA

Client / Model: Aladdin Northshar	Tracking #: 4/9 P	roject #: <u>061-5-50-3</u>
Date: 12-18-02 Test Crew: BO	دين	Rum #:/
OMNI Equipment ID #:		
FUEL LOAD PREPARED BY: B DAVIS FUEL: DOUGLAS-FIR SPECIES, UNTREATED, DIMENSIONAL LUMBER.	AIR-DRIED, STANDARD GRAD	E OR BETTER,
MOISTURE CONTI CALIBRATION: Cal Value (1) = 12%	C-BURN FUEL ENT (METER DRY BASIS) Actual Reading /2 Actual Reading 22	•
Piece Length 1 \$ ft 2 \$ ft 3 ft	Readings /۲. ۲ /9. / /9. 3 /9. /	Type 2×4 2×9
Length of cut pieces: 8 2 12 inches	Pre-Burn Fuel Average Mois	ture: [9.1
Time (clock): 10.20 Room Temperature	F): 70 Initials: 13/	7
	·	
FUEL TYPE AND AMOUNT: 2 × 4	ACTUAL LOAD WEIGHT:	8./ (2 × 4) 3. 9. (4 × 4) / 2.8 4 Total
	NT (METER – – DRY BASIS)	
<u>PIECE</u> <u>REA</u>	<u>DINGS</u>	<u>rype</u>
4	20.1 20.6 2.3 21.4 F.7 21.6	2×4 2×4 2×4 4×7 4×7
	D MOISTURE A VERAGE: 20.	
Time (clock): 10:20 Room To	emperature (F): _ 70 I	nitials: <u>A</u>
Technician signature: 2.7		: 1-2-03

Dun Notos

	Model: Aladd No thstac A ing Number: 419 12-18-02 I Equipment ID Numbers:	cun 140t	es _			
Client	ing Number 4/9	 .	Pr.	oject #: _	06/-S-60.3	
Track	12.18.02	Test Crev	x 14.7	111 # Daui		
OMN.	I Equipment ID Numbers:		···			
02	· ·	PREBURN		-		······································
DESCE	RIBE OR SKETCH AIR OR THERMOMS (SETTINGS MUST BE ACCURATE AND	TAT SETTING	GS BELO'	W:		
PRIMA	RY:	 -1	SE	CONDAR	Y: fixed	
	fully closed	·				
Ì	0"		TE	RTIARY:	NA.	
	ope	İ				<u> </u>
			FAI	N:	on high	
	PREBURN SET				-	
TIME	AIR (THERMO) <u>CHANGES</u> PRIMARY/SECONDARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	COMMENT
Ø	Test setting		,			
45	<u> </u>				×	>
					-	
					~	
7		TEST			,	
	JEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)		ART UP P PASS:	ROCEDU ∧	-	
	(INDICATE VEW ANGE)			$ING \frac{1}{6y}$	32 sec.	<u> </u>
	VI	1001)R: <u>c/v</u>	sed by 40 sells out	1./ 4:55
	,1/1 1/1	1 IN	WAKI A		sol by te	1 4.33 1 Setting
		OTT	ÆR:	laka a I	1 1 01 . []	J- 1
		011	iek:	a 2 h	or timer that	Pallons addition
)FSCDII	BE OR SKETCH TEST SETTINGS BELO			A.r owh	il the timen c	loses it
SETTINGS	S MUST BE ACCURATE AND REPRODUCIBLE)	291	m.v		<i>(</i> 1	
RIMAR	Y:	ا ا د چ	SECO	ONDARY	: _ fixed	
	Same as Abore	Adjustice	tue I		•	· · · · · · · · · · · · · · · · · · ·
		load att	ea Teri	MARY:	NA	
		Adjusted load aft (3) Zero L	reight			0. 1
		Lisses	FAN:		off for f	+ 11.0
L					- Juen se	1 Trighau
	Technician signa	ture: <u>136</u>	2		Date: <u>/- 2-</u>	>3
ontrol No	P-SFAK-0003 (Fir Notes) doc, Effective date: 08/07/,	200a				2-110f2-42 Page 1 of 1
	Se data in a straightful and a contraction of the				4	-601-

Supplemental Data EPA 5G/5H

Client /	Mode	ı: <i><u>Al</u>a</i>	dd.w	Noth	Star A		Project No.:	041-5 - 50	- 3			
Trackin	g No.:	419	····	_ Dat	e: <u>/2-/8-02</u>	Run N	o.: <u>/</u>	Booth: Stop Time:	1			
Test Cr	ew:	BDA	حنىه	-		Start T	20.05 211					
OMNI E	Equipn	nent #	's:			, <u></u>			·			
		. T	11.	Ob!-								
Gas An	-	r Irain	Leak	Check				2012				
	Stack:			/		ution Tunnel	•	• •				
		initiai:	900	1		ir -			•			
Initial: Initial: Final: Final: Final: Calibrations: Span Gas CO ₂ :9.96 O ₂ : O ₂ : CO: CO: CO ₂ (DT):												
Calibrat	tions:	Span	Gas	CO ₂ :	<u>9.96</u> 0	2: 10.6	CO: <u>/,2 3</u>	. CO₂(DT): <u> </u>	1.26			
	NI G	Span	N _a s	Span	N₂ Span	N ₂ Span	N₂ Span	N₂ Span	N₂ Span			
Time	112		 		142 Opan	142 Opai1	112 Opan	112 Opai1	142 Spail			
O ₂	. 6	T	E0									
$\frac{O_2}{CO_2}$	10.6		1	0.0	· · · · · · · · · · · · · · · · · · ·							
CO	7.9	0.0		0.0								
•	1.23	0.00		0.00	· · · · · · · · · · · · · · · · · · ·				<u> </u>			
O ₂ (DT)	1.26	0.00	1:25	0.0								
Stack D	iamete	er (inc	hes): _	8"		_						
Air Velo	city (ft	/min) :	Init	ial:	250 Fl/min	Final:	250 H/m.	<u> </u>				
					-	Post Te						
Induced	Draft:	0	00	2	_ %S	moke Captu	ге: <u>100 /</u>	7				
					Q 3.0		ost: <u> </u>		_			
Flue Pip	e Clea	aned F	Prior to	First	Гest in Serie	es: Date:/	12-17-02	Initials: 🔥	7			
•												
			· · · · · ·	Initi	al	Mid	dle	End	ing			
Pb (in	. Hg)			28.46		28,	49	28.53				
Room Te	emp (°	F)		25	74 ou	70 72						
Technician signature: 150 Date: 1-2-03												

ard ect Number

Tast Date

-981 Statt = -9

Appropriational information

·	-		Wood Heater Test Data
Number 2	_]		EPA Method 5H
Manufacturer	Hearth & Home Tech.	Sample Pate Control Vocus Number:	21
Stove Model, Tracking "Aumber	Normstar a	Test Water Y	0 992
204 4034		=	

Prior Tube Co

Average Buildmethy Pressure.

Average Flei Moisture (31) cass %)

ONNi Education Numbers

051-S-50-3

19-Dec-02

12 40

10

Dilutori Tunnel Flow Dilution Tunnel Velocity Traverse Data Pt.1 PL3 Pt.4 Pt.5 PL2 PLS PL7 77.8 Innal indal dP ntal Temp 0 044 0 050 0 052 0.051 0 132 1120 153.4 95 95 ٥F 1-7-03

		Initial/Assu	med Values	
Diution	WW: Ibib-roll	29 56	Ámbent CO2 (%)	0 034
Tarrei	-20 (°s)	4.00	Preferred renal Sampany Pale	0.27

Flue Gas	
impinger fauld, VIc (g)	97 7
/ciume of Water Vapor, Vw(std) (ft3)	4.61
Voisture Content, Bws	0.061

		3	50						•												1		O. 115191	TALLUI, YM SIGI	(100)		-i I
tory Samouri	The moves											······································	_	Post-Test	Leak Check:	0C8 Ø 15	ctm 0 "Hg						Voisture Conten	I, Bws		0.061]
			Parts	ರಚಿತ್ರ Samplin	g System	·		,	Fuei	Weight		Stove	e Flue-Gas Cone	ditions					Stove Temp	ञ्चापन्ड (oF)	4			Dilution	Tunnel		Laboratory
Elepsed Time	Lies - las Meter Roubing (cf)	Sample Rate (cfm)	Orifice dH (inches *c)	Proportional Rate (%)	Dry Cas Meter Temperature (F)	Sample Trum Vacuum medes Hg s	monger Ext Temperature (F)	Hos Bos Temperature (h)	Scale Reading (Bs)	Weight Change (Rhs)	traft Pressure (findes &c)	02(4)	1,05(4)	ത്രമ	Теператачне (Е)	Air to Faci Raso (35/16)	Enretors Top	Cirches Bassan	Forethose (Back	Firebox Left	timely Selection	Average Series Temperature (F		df Velcany Pessure miches wer	Statue Pressure (melies Ac)	ं विद्यास	Zaranine is
0	543,700		0,19		: 36	o	35	235	17.4		-0.010	18.2	19	0.82	129	30.0	196	256	243	219	313	247	95	0.046	-0.43	0.410	77
10	646 350	0.265	0.25	100.0	- 87	2	68	239	16.9	-0.5	-0.021	18.0	2.4	0.32	153	30.1	217	257	241	249	331	259	100	0.046	-0 43	0.590	: 72
20	549,150	0.281	0.37	95.3	: 90	2	67	238	15.7	-1,2	-0.041	14.7	5.7	0.39	240	16.4	421	245	233	251	328	298	118	0.046	-0.43	1,670	70
30	552,580	0.352	0.28	96.8	: 92	2	67	. 237	. 14.2	-1,5	-0.054	. 11.3	8.9	0.75	306	11,1	540	244	236	260	325	321	133	0.046	-0.45	2.310	70
40	655.760	0.308	0.26	96.6	94	2	67	237	12.1	-2.1	-0.056	10.4	10.4	0.28	353	10.1	580	237	241	227	288	335	142	0.048	-0.43	2,520	71
50	658.720	0.296	0.26	96.3	95	2	66	235	10.3	-1.8	-0.058	10.1	10.9	0.26	362	9.8	703	246	250	240	275	345	163	0.046	-0.43	2.780	71
60	661 740	0.302	0.22	100.4	11 97	2	65	235	8.6	-1.7	-0.052	10.7	9.7	0.30	344	10.7	685	258	285	266	277	356	142	0.046	-0.43	2.280	78
70	. 664 540	0.290	0.25	99.3	∍ 98	2	65	235	7.1	-1,5	-0.052	10.2	9.8	. 0 28	342	10.7	701	284	307	289	284	373	142	0.048	-0.43	2.410	80
80	667.750	0.321	0.24	107.4	H) 101	2	65	238	5.5	-1.6	-0 051	9.7	10.5	0.31	349	10.0	728	306	334	318	294	. 396	145	0.048	-0.43	2.540	82
90	570 400	0.265	0.24	90.9	· t02	2	64	235	4.2	-1.3	-0.050	10.2	9.7	. 0.19	349	10.8	734	325	356	341	301	412	145	0.048	-0.43	2.370	84
100	573 350	0.295	0.24	100.0	à. 101	2	64	234	3.3	-0.9	-0.048	13.3	6.8	0.28	307	14.5	613	348	375	357 .	314	401	132	0.048	-0.43	1.540	75
\$10	675 300	0.295	0.22	100.8	99	2	£ 5	230	2.9	-0.4	-0.042	14.0	5.8	0.58	275	15.8	537	357	380	358	321	391	122	0.046	-0.43	1.340	74
120	579 350	0.305	0.15	107.9	· 2· - 97	2	65	234	2.6	-0.3	-0.032	14.6	5.3	0.81	233	16.3	449	366	383	349	329	375	110	0,046	-0.43	1.000	70
130	. 581.750	0.240	0.11	103.8	35 97	2	65	230	2.4	-0.2	-0.028	14.6	5.1	1,01	205	16.3	391	367	379	336	335	362 .	106	0.046	-0.43	0.840	70
140	683.930	0.218	0.09	107.7	30 9 6	2	65	234	2.2	-0.2	-0.022	14.7	4.9	1,14	184	16.5	352	360	370	320	331	347	103	0.045	- 0.43	.∵0.730 🌂	270,™€
35 - 150 - , 156	685,950	0.202	0.09	110.1	₽ 2 96	2	- 56	238	21	-0.1	-0.021	14.9	48	1,28	173	16,4	322	349	356	302	318	329 .	100	0.046		0.710	74 6
160	687.910	0.198	0.06	108.9	?: 97	2	66	237	1.9	-0.2	-0.021	14.9	4.7	1.25	. 165	16.6	305	336	344	268	309	316	99 .	0.046	-0.43	0.650 🤄	76
170	589.570	0.176	- 0.07	102.7	:- 98 - 98	. 2	67	236	1.8	-0.1	-0.021	14.8	4.8	1.39	158	16,1	295	323	ैं) 331 ्रा	278	303	308	98	0.048	0.43	0.630	n
180	691,350	0.168	0.08	103.0	(- 98	2	67	232	1.7	-0.1	-0.020	- 14.8	4.7	1.41	159	16.3	291	312	319	265	298	297	98	0.048	-0.43	0.660	.76
190	693.200	0.185	0.08	105.4	∵ 98	2	67	236	1,5	-0.2	-0.019	15.t	4,3	1.52	-153	16.9	282	299	306	254	292	257	95	0.046	-0.43	0.590	74
200	595,000	G.190	9.08	105.0	黎5 39	2s. 2	68	231	1.4 .	c -0.1	-0.017	15.5	. 40, .	.: 1: 1,48×	149	. fr 17.8y	- 272	282	297	246	29%	276	96	0.048	2 43	2.560	75
210 -	896.830	0.183	0.08	104.5	₹ 99	- 2	65	229	1.3	-0.1	-0.017	15.6	3.8	1.59	144	18.0	263	279	289	236	278	259	94	0.046	-0.43	0.520	75
220	898.500	0.177	0.07	103.6	F2 99	2	65	229	12	-0.1	-0.013	18.0	3.7	1.42	139	18.8	247	269	275	225	259	257	94	0.048	-0.43	0.480	75
230	700.370	0.177	0.06	109.4 -	자를 96 -	2	64	234	1.1	-0.1	-0.011	16.5	3.1	1,57	136	20.2	232	259	263	216	250	246	94	0.046	-0.43	0.390	75
240	702.050	0.168	0.07	108.6	S 99	2	64	236	1.1	0.0	-0.011	16.7	2.5	1.34	133	23.4	219	251	254	209	253	237	94	0.048	-0.43	0.350	.75
250	703.610	0.158	0.07	91.6	52 5 98	2	85	234	1.0	-0.1	-0.011	16.8	2.5	1.28	128	23.7	207	241	243	200	244	227	93	0.046	-0.43	0.350	76
260	705.250	0.164	0.09	96.5	att. 99	2	55	230	1.0	0.0	-0.010	16.9	. 2.5	1.35	. 128	23.4	200	231	233	192	235	2:8	93	0.046	-0.43	0.380	75
270	707.250	0.200	0.10	107.0	31 100	2	65	234	0.9	-0.1	-0.010	17.1	2.4	1.28	a. 127	24.2	192	221	221	184	223	208	92	0.048	-0.43 -0.43	0.390	75
250	709.250	0.200	0.10	99.5	. 100	2	68	232	0.8	-0.1	-0.010	17.1	2.4	1.25	125	24.3	186	215	211	179	215	201	92	0.046	-0.43	0.380	75
290	711.010	0.175	0.10	90.4	> 100	2	58	230	0.8	0.0	-0.010	16.6	28	1.35	123	22.9	181	209	202	174	208	195	91 91	0.048	0.43	0.540	75
300	713,100	0.209	0.21	106.3	100	2	67	235	0.8	-0.2	-0.009	16.1	2.4	1.26	121	24.3	174	202	195	169	203	189	91	0.048	-0.43	0.570	75
310	715.140	0.304	0.07	106.2	100	2	66	236	0.4	-0.2	-0.010	15.2	4.4	1.03	122	17.9	179	153	190	166	204	186	92	0.046	-0.43	0.550	74
. 320	717,890	0.175	0.07	106.4	. g7	2	66	230	0.3	-0.1	-0.010	15.4	4.3	1.13	124	17.9	184	188	188	166	209	187	90	0.045	0.43	0.530	74
330	719.500	0.171	0.05	105.9	97	2	65	228	0.2	-0.1	-0.010	15.5	4.4	1.09	123	17.8	187	184	189	167	217	189	89	0.048	-0.43	0.520	74
340	721.250	0.165	0.06	108.3	211 91	2	56	230	0.1	-0.1	-0.010	15.6	4.3	1.13	123	17.9	188	182	189	167	22.2	190	89 89	0.048	-0.43	0.520	73
350	722.907	0.166	0.08	109.2	::- 91	- 2	66	234	0.0	0.1	-0.009	15.8	4.3	0.93	122	18.5	188	179	188	168	227	190	·			77 - 17 - 1	.73

Control No. P.-SSI-0005 (5H Emission Calcutations).xis, Effective Date: 5/2/2002

Pare 1 of

Run 2a xh

2-14,85-41

Wood Heater Test Data EPA Method 5H

n Number ncal Orice and 961-S-50-3 3 99 Pilot Juce Co 19-Dec-02 23 55 12:40 OMNI Etal omen: Numbers

Arter To Spirit married			0	Mon Tunnel V	elocity Traverse (Data				Déuton Tunna
	PL1 .	PL2	Pt.3	Pt.4	Pt.5	PLS	PL7	PL8		Flow
inital :P	0.044	0 050	0 052	0 044	0.544	0.051	0.052	0 032	7120	Initial
cme ^T leann	95	95	95	95	95	<u>«</u>	95	96	1 720 0F	153.4 sct/minute

37 7

28 58

YW (lon-did), WY

Amouent (CO2 (75) referred in basi Samoung Rate of minutes

	1												_	Post-Test	Leak Check	00a 3 1	5 cm 0 Hg			_			ASPONSO IN WAIT	r Vapor, Vw(std) (163)		_
		T	Parti	culate Samplin	ng System	т			Fuel	Weight		Stov	e Flue-Gas Cor	xtitions			- 1						Moisture Conte	nt, Bws		0 061	_
Elepsed Tone	Dity (See Motor Reading (ct))	Sample Rate (efm)	Onfice dH (inches we)	Proportional Rate (%)	1	A martine continu		Het Box	Size Rending	Weight Change	Fait Pressure			T	T	T	 -	Т	Stove Temp	cratures (oF)	, ,			Dilution	n Tunnei		Laboratory
				(2)	Teperature () :	Hgr	(F)	Entitetains (F)	lbs;	(lbs)	(mubes we)	05:61	1,051.61	cour	Temperature (F	Air to Fuel Ratio (Ib/Ib)	Firehox Top	Finches Battan	Firebore Back	Firebox Left	freebox Roote	Average Surface		JP Velocity	Statte Pressure		
Timal Sampling Time	Total Sample Volume (cf)	Average Sampling Rate	Average Onfice dH (inches wo):	Áverage Procestico si	Average Vieter	Maximum Sample Train	Average monger East	Average ≕ot		Average	Average Flue		 	Average	 		}	 	<u> </u>			Тепкостание (F)	Sympositore (F)	i Yessare (mehex	tinches wer		Authori Femineratur (F)
(minutes)		(cim)	dH (inches wc)	Rate (%)	Terro (oF)	Vacuum (incres ≒g)	amparatura (F)	Box menor Temp (oF)	Total Fuel Burned ((bs)	interval Weight	I	Average Oxygen (% 02	Average Cartion Dioxide		110.030, 20	I Fuel Ratio	Firebox	Average Firebox Bottom	Average	Average Firebox Left	Average Prebox Sion:	Difference in (Beg. End)		Average	Average	Aremue	Average
250	79 207	0 225	0 14	102 75	96.8					Change			(°4 CO2)	(°>CO)	Temp (sF)	(ND/16)	TopTemp (oF0	Temp (oF)	Temp (oF)	Side Temp		Stove Surface Temps (oF)	: rruuei (suub	Olluson Tunner dP (inches +c)	Static Pressure	Official Tunnel CC2 (%)	Laboratory Ambient Temp
2	L		L		. ~ .	2 30	≎6 25	233 81	, 17 ±0	0.50	-0 02	. 14.56	5.13	0.97	194 81	17.85	353.92	268 sit	275,17	19.7	(0.7)				(inches +c)	002118	(oF)
					1 govern				'''''	`			L	<u> </u>	<u> </u>		L		2/3,1/	245.25	275 39	57	107 31	0 05	-0.43	1 31	74 58
													•													'	<i>i</i> 1

Wood Heater Calculation Data EPA Method 5H

Run	2
Manufacturer:	Hearth & Home Tech.
ModeVTracking No.:	Northstar a
Test Date:	19-Dec-02
Project Number:	061-\$-50-3

	4.40
D -1 - (dw. ka/bour) -	1.13
Burn Rate (dry kg/hour) =	

	4 70
Emission Rate (grams/hour) =	1.73
Ellission hate (grams/ried) =	
	b

Note: When using the CO2 tracer-gas method,1/Qf (by tracer gas) = Si

Elapsed Time (minutes)	Dilution Tunnel Velocity (feet/second actual)	Fo (1.00 to 1.12)	Of by carbon balance	Qt-new (scf/minute)	Of by tracer gas (sct/minute)	1/Qf by tracer gas (Si)	Volume Sampled (dscf)	Si * Volume Sampled	Proportional Sample Rate	dH new
	•		(scf/minute)	153.4	30.9	0.032				
	100 F 10 F 10 F 10 F 10 F 10 F 10 F 10			152.9	35.9	0.028	2.427	0.078	100.0	0.252
10	15.1	1.13	16.9	150.5	43.5	0.023	2.569	0.071	95.3	0.366
20	15.3	1.05	22.1	148.6	38.2	0.026	3.202	0.074	98.8	0.281
30	15.5	1.03	18.7	 	36.8	0.027	2.791	0.073	98.6	0.261
40	15.6	1.00	23.9	147.5	36.6	0.027	2.672	0.073	98.3	0.258
50	15.9	- 0.98	19.7	145.0	34.3	0.029	2.721	0.074	100.4	0.225
60	15.6	1.04	20.5	147.5	35.9	0,028	2.514	0.073	99.3	0.246
70	15.6	1.08	18.0	147.5	35.9	0.028	2.877	0.080	107.4	0.236
80	15.6	1.05	18.0	147.1	35.6	0.028	2,362	0.067	90.9	0.240
90	15.6	1.09	15.8	147.1	35.3	0.028	2.625	0:074	100.0	0.237
100	15.5	1.09	14.6	148.8	34.0	0.029	2.630	0.074	100.8	0.220
110	15.3	1.13	7.1	150.0	27.8	0.036	2.729	0.080	107.9	0.148
120	15.2	1.10	5.5	151.6	 	0.041	2.154	0.077	103.8	0.112
130	15.1	1.11	3.7	152.1	24.2	0.046	1.957	0.081	107.7	0.091
140	15.1	1.12	3.7	152.5	21.8	0.046	1.816	0.083	110.1	0.090
150	15.1	1.09	1.8	152.9	21.7	0.049	1.762	0.081	106.9	0.078
160	15.0	1.11	3.8	153.1	20.2	0.052	1.580	0.078	102.7	0.070
170	15.0	1.10	1.8	153.2	19.2	0.032	1.505	0.079	103.0	0.081
180	15.0	1.11	1.8	153.2	20.6	0.050	1.657	0.081	105.4	0.077
190	15.0	1.13	3.8	153.6	20.0		1.613	0.081	105.0	0.079
200	15.0	1.12	2.0	153.6	20.4	0.049	1.637	0.080	*104.5	0.075
210	15.0	1.13	2.0	153.8	19.8	0.050	1.583	0.080	103.6	0.067
220	15.0	1.10	2.1	153.8	18.7	0.053	1.583	0.085	109.4	0.061
230	15.0	1.11	2.3	153.8	17.9	0.056	1.505	0.083	108.6	0.074
240	15.0	1.27	0.0	153.8	19.7	0.051	1.395	0.034	91.6	0.074
250	15.0	1.25	2.7	153.9	19.7	0.051	1,469	0.071	96.5	0.089
260	15.0	1.21	0.0	153.9	21.6	0.046	1.789	0.074	107.0	0.102
270	14.9	1.21	2.7	154.0	23.2	0.043	1.785	0.003	99.5	0.097
280	14.9	1.21	2.7	154.0	22.5	0.044	1.785	0.017	1 33.5	-1

Woodstove Type	
Yhc>1=cat,2=ncat, 3=pellet	2
EPA's Hydrocarbon Constant (%)	1.32
Fuel Data	
Test Charge (as fired lbs)	17.4
Average Moisture (% dry basis)	19.78
Average Moisture (% wet basis)	16.51
Run Parameters	
DGM initial reading (cf)	e 643.700
DGM final reading (cf)	722.907
Pb (inches Hg)	28.55
Tm (avg oF)	96.83
dH (avg inches wc)	0.14
Vm (scf)	71.119
Of by carbon balance (avg dscf/minute)	7.30
Analytical Data	
Probe/Front Wash (mg)	33.7
Front Filter (mg)	45.8
Impinger PM (mg)	149.2
Back Filter (mg)	51.4
Total Weight (mg)	280.1
- · · · · · · · · · · · · · · · · · · ·	
Emission Results	0.0039
Cs (g/dscf)	1.73
ER (g/hour)	

Run 2a.xis

	Test	Laboratories

290	14.9	1.26	0.0	154.2	22.6	0.044	1.571	0.070	90.4	0.097
300	14.9	1.48	5.5	154.2	33.0	0.030	1.866	0.083	106.8	0.207
310	14.9	1.14	4.0	154.0	18.9	0.053	2.715	0.082	106.2	0.068
320	14.9	1.12	2.0	154.0	18.6	0.054	1.562	0.083	106.4	0.066
330	14.9	1.08	2.0	154.3	17.5	0.057	1.535	0.082	105.9	0.059
340	14.9	1.08	2.0	154.5	17.6	0.057	1.481	0.084	108.3	0.060
350	14.9	1.06	2.1	154.5	17,6	0.057	1.503	0.085	109.2	0.060
350	14.3	1.00	_1	.1	<u> </u>					
+ emnes/Totals	15.1	1.13	7.3	152.0	26.0	0.042	2.033		102.8	0.140

Run 2a.xis

Final Laboratory Report - Method 5H Dilution Tunnel Particulate Calculations

client Name:	Aladdin Hearth Products	Equipment Numbers:	Run No.:	2	
Model:	Northstar a		Date:	12/19/02	
project No.:	061-S-50-3				_
Tracking No.:		****			

PARTICULATE COMPONENTS

Sample Component	Reagent	Filter # or	1.00	V	Veights	-
		Volume, ml	Final, mg	Tare, mg	Blank, mg/ml	Particulate, mg
A. Front filter catch	Filter	M140	652.8	607.0	•	45.8
B. Rear filter catch	Filter	C827	171.5	120.1		51.4
C. Rinse of probe and filter assembly (FRONT)	Acetone	125	107228.1	107194.4	0.0000	33.7
D. Rinse of Impinger Set	Distilled Water	300	216746.8	216684.6	0.0000	62.2
E. Rinse of Impinger Set	Dichloromethane	150	104958.8	104928.6	0.0000	30.2
F. Rinse of filter assembly and gas train (BACK)	Acetone	155	92001.2	91944.4	0.0000	56.8
	<u> </u>		Tot	al Particulate,	, mg :	280.1

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Rinse of probe and filter assembly (FRONT)	(Final, mg - Tare, mg) - (Blank, mg/ml x_Volume, ml) = Particulate, mg
D. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
E. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
F. Rinse of filter assembly and gas train (BACK)	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg

CONDENSED WATER	Weights						
IMPINGERS	Final, g	Initial, g	Net, g				
. 1	721.2	644.9	76.3				
2	576.2	568.5	7.7				
3	542.1	541.5	0.6				
4	864.8	851.7	13.1				
		TOTAL, g:	97.7				

Analyst:	BO-	Date:	1-3-03	
_		_		

Laboratory Report run 2

EPA Method 4 Analysis Worksheet

Client Locati	on: <u>Aladd</u>	~ Norlls	han A	P	roject #: <u>_<i>c\</i> </u>	-5-50-3
Test Date: _	12-19-02		Test Crev	v: <u>B Da.s</u>	F	Run #: _ <u>2_</u>
Sample Tr air	n#: <i>A</i>	Assemble	ed by:	DAVIS	Cleaned by:	<u>BD.</u>
		Filt	er Identificat	ion		
Front Filter	1st Filter#	m 140	Back	Filter 1st F	ilter# <u>८</u> 827	
] 2nd Fater # _	· —		2nd F	ilter#		
Bru Piner#_			3rd Fi	lter #		
	G	ravimetric An	alysis—Conc	lensed Water		
Impingers:	1	2	3	4	Total	Ву
Final:	721.2	576.2	5421	8648		
Initial:	644. 9	568.5	541.5	851.7		13 P
Net Weight	7/1	, , ,				75.00

4	
1	,,
ł	Ľ
į	OD 5G
	_
1	느
1	C
1	÷
diam'r.	1
1	MET
į	Ш
į	5
والمعرفية ويسيم والمراجع ويستهم فكالهلام فيستقي المستمارة والمستوي ويسترونها فلتقط فكأست فاستعدا والمتراط والمتراط المتراط أمانا المتراط والمتراط المترط والمتراط والمترط والمتراط والمتراط والم	1
The second obligation of the second of the s	1
3	1
1	1
4	7
	Q,
-	\cap
ı	Г
	⊢
1	'n
ł	ľή
ì	Ξ
1	Γ
	ш
1	₹
ı	Ļ
4	0
ı	
ı,	1
ı	5
I	Ľ
1	Ц
ľ	5
ä	
l	≥
1	ĮĮ.
Ĭ	_
ł	
	Ш
	5
ľ	-
ľ	J
ŀ	-

Page Lof L Tracking #: 47.9 Run #: 2 Project #: 02/-5-50-3 Test Crew: BDANIS Client/Model: Aladd. Northshan A OMNI Equipment ID #:_ Date: 12-19-02

Preburn X			Coal Rad							
			מים והים		Ŋ				Actual:	
-	:		Uata:	Q = 0		Range:	Range: 35 - 43	,	Coal Red.	27
ruel	Delta	Stack			<u> </u>	TEMPERATURES (0F)	rures (o			•
	Weight	Draft	Ambient	Тор	Left	Right	Back	Bottom	FILLE	Catalvet
\top	\	7675	69	476	453	442	349	503	200	, , , , , , , , , , , , , , , , , , ,
7	0.(025	75	397	444	2/7	27.2	, 0	462	T N
	0.7	-021	77	22.6	272	0	1 1	Sac	17+	
	0.0	- 020	750	25.7	7,0,1	353	346	470	176	
1	10	7 - 7	77	2000	383	360	327	444	165	
T		12.5	12	44	35%	328	305	740	1551	
1	7.0	-:012	77	249	33/	305	737	404	301	
1	0:0	2012	15	232	309	284	270	280	, ,,,	
1	0.7	1/10-	75	216	78×	266	420	30-2	727	
	0.0	110-	H	761	076	24.5	7 7 6 6	5 .	\$33	-
					2		941	32/	147	
1										
-										
\dagger										
\dagger				-						
\dagger										
\dagger										
\dagger										
		···								
1										>
						•				

Date: 1-203 Technician signature: _

Control No. P-SFG-0004 (Woods ove Temperature Text Data-Method SG), sts, Effective date: 08/07/2000

2-2082-42

Client / Model: Aladd No. Ilsan A Tracking #: 419 Project #: 081-5-58-3 Date: 12-19-82 Test Crew: B Davis Run #: 2 OMNI Equipment ID #: FUEL LOAD PREPARED BY: B Davis FUEL: DOUGLAS-FIR SPECIES, UNTREATED, AIR-DRIED, STANDARD GRADE OR BETTER, DIMENSIONAL LUMBER. PRE-BURN FUEL MOISTURE CONTENT OFFTER - DRY BASIS) Cal Value (1) = 12% Actual Reading 12.0 Cal Value (2) = 22% Actual Reading 22 Piece Length Project #: 081-5-58-3 PROJECT OF TREATED AND ACTUAL Reading 12.0 Piece Length Project #: 081-5-58-3 Run #: 2 PROJECT OF TREATED AND ACTUAL Reading 12.0 Actual Reading 22 Piece Length Project #: 081-5-58-3 Project #: 081-5-58-3 Run #: 2 Project #: 081-58-3 Run #: 2 Project #:
Date: 12-19-02 Test Crew: 3 Oav: Num #: 2 OMNI Equipment ID #: FUEL LOAD PREPARED BY: 3 Oav: S FUEL: DOUGLAS-FIR SPECIES, UNTREATED, AIR-DRIED, STANDARD GRADE OR BETTER, DIMENSIONAL LUMBER. PRE-BURN FUEL MOISTURE CONTENT (NETER - DRY BASIS) Cal Value (1) = 12% Actual Reading 120 Cal Value (2) = 22% Actual Reading 21 Piece Length 203 Readings 120 Piece Readings 120 Piece Re
OMNI Equipment ID #: FUEL LOAD PREPARED BY: B Davis FUEL: DOUGLAS-FIR SPECIES, UNTREATED, AIR-DRIED, STANDARD GRADE OR BETTER, DIMENSIONAL LUMBER. PRE-BURN FUEL MOISTURE CONTENT (A ETER - DRY BASIS) Cal Value (1) = 12% Actual Reading 120 Cal Value (2) = 22% Actual Reading 24 Piece Length Piece Length 1 Fr ft 203 Readings 128 Piece Length 1 Fr ft 203 Readings 128 Piece Length 1 Fr ft 203 Readings 128 Piece Length 1 Fr ft 203 Readings 128 Piece Length 1 Fr ft 203 Readings 128 Piece Length 1 Fr ft 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 203 Readings 128 Piece Length 204 Piece 204 Pi
FUEL LOAD PREPARED BY: B Davis FUEL: DOUGLAS-FIR SPECIES, UNTREATED, AIR-DRIED, STANDARD GRADE OR BETTER, DIMENSIONAL LUMBER. PRE-BURN FUEL MOISTURE CONTENT (A:ETER DRY BASIS) Cal Value (1) = 12% Actual Reading 120 Cal Value (2) = 22% Actual Reading 22 Piece Length Piece Length Readings Piece Length 1
PRE-BURN FUEL MOISTURE CONTENT (A:ETER DRY BASIS) Cal Value (1) = 12% Actual Reading 120 Cal Value (2) = 22% Actual Reading 21 Piece Length 1
CALIBRATION: Cal Value (1) = 12% Actual Reading $\frac{120}{2}$ Cal Value (2) = 22% Actual Reading $\frac{120}{2}$ Piece Length $\frac{1}{2}$ ft $\frac{203}{2}$ Readings $\frac{128}{2}$ $\frac{1}{2}$
Cal Value (1) = 12% Actual Reading $\frac{120}{24}$ Piece Length 1 $\frac{1}{2}$ ft $\frac{203}{24}$ $\frac{Readings}{200}$ $\frac{128}{274}$ $\frac{1}{11.5}$
Piece Length 203 Readings 128 Type 1 11.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{2}{8} \frac{1}{19} \frac{2}{19} \frac{2}{216} \frac{2}{277} \frac{2}{19} \frac{2}{277} \frac{2}{19}
II
Length of cut pieces: Ye 12' inches 20.3 1/3 Pre-Burn Fuel Average Moisture: 20.4
Time (clock): 700 Room Temperature (F): 70 Initials: 30
TEST FUEL
CALCULATED LOAD WEIGHT: 18-7 ACTUAL LOAD WEIGHT: 8.5 (2×4)
FUEL PIECE LENGTH $2c$ $\frac{8.9}{4\times4}$ (4×4)
MOISTURE CONTENT (METER DRY BASIS)
PIECE READINGS TYPE
1 20.1 20.6 19.2 484
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5 20.3 19.3 19.1
7
8
10
OVERALL TEST FUEL LOAD MOISTURE A VERAGE: 1938

Technician signature: _

Room Temperature (F): _________

0915

Time (clock): ___

Initials: 3/2

Run Notes

Oliant	Model: Aladd Ning Number: 4/5		un 110t		niect#	06/- 8- 50- 2	
Track	ing Number: 4/5			Ru	n#: 2	06/-S-50-3	
Date:	12-19-02		Test Crev	v:	0		
OMN	I Equipment ID Numbers:				·		
			PREBURN				
DESCR	RIBE OR SKETCH AIR OR TI SETTINGS MUST BE ACCU	HERMOMST.	AT SETTING	S BELO	₩:		
PRIMA				SEC	CONDAR	Y: Fixed	
	7 11	reclosed a	rea	TEI	RTIARY:	NA	
	125° 0pe 1/1/	<u></u>		FAì	٦٠	0- 6.94	
		_		1711	٠.		
	PREE	URN SET	TINGS ANI			J	·
TIME	AIR (THERMO) <u>CHA</u> PRIMARY/SECONDARY/		SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	COMMENT
Ø	Test setting					X	
45						^	
				2			
				-			-
	TEL CONTICUE ATION OVE	TOU.	TEST	Dr. IID D	DOCEDII.	DES	
	JEL CONFIGURATION SKE (INDICATE VIEW ANGLE)	ich	BY	ASS:	ROCEDU <u>ル</u> か		
	<u></u>] FUE			30 sec ed by 50 se	·
	XX		PRI			y open u-h.1	
				ŒR:	2 1	timer was	set when
<u> </u>		<u> </u>]	1 626	1. 0	1. de was open 291 ollen ze	
ESCRII ETTING: RIMAR	BE OR SKETCH TEST SETT S MUST BE ACCURATE AND REPI Y	INGS BELOY RODUCIBLE)		10 سر د	I min.	Eined	ere way,
	same as Abre		٠	550	``		
	·			TER	MARY:	-4	
				FAN:		oll for first	30 ~~
						The Set A	- High
	Tect	mician signatı	ure: <u>B</u>	<u> </u>	<u> </u>	Date: _/- 2-	03
ntrol No.	P-SFAK-0003 (Run Notes).doc, Effect	ive date: 08/07/20	000			Ä] -]] 6 -] age 1 of 1

Supplemental Data EPA 5G/5H

Client / Model: Aladd. North In						Project No.: <u>04/-s-50 - 3</u>			
Tracking No.: 4/9 Date: 12-19-						02 Run N	o.: <u> </u>	Booth: _ /	
Test Crew: B Onus						Start T	ime: <u>/2:</u> 40	_ Stop Time	: 18:30
OMNI Equipment #'s:									
Gas Analyzer Train Leak Check:									
Stack: Dilution Tunnel (Method 5G Only):									
		Initial:	: Initial:						
Initial: Initial: Final:									
Calibrations: Span Gas CO ₂ : 9.96 O ₂ : 10.6 CO: 1.23 CO ₂ (DT): 1.26									
	,								
	N ₂ S	Span	N ₂ S	Span	N₂ Span	N ₂ Span	N₂ Span	N ₂ Span	N₂ Span
Time	Ø		E	0 T			·-		·
O ₂	0.0	10.6	-0.1	10.6					·
CO ₂		9.9		9.7					
CO	0.00	1.23		1.22					
O ₂ (DT)	0.00	1.26		1.28	·				
Stack Diameter (inches):8									
Air Velocity (ft/min): Initial: <50 ft/m. Final: <50 ft/m.									
Scale Audit (lbs.): Pretest: 10.0 Post Test: 10.0									
Induced Draft: 0.0 %Smoke Capture: 100 %									
Pitot Tube Leak Test: Pre: 0.0 0 3.0 Post: 00 0 3.0									
Flue Pipe Cleaned Prior to First Test in Series: Date: 12-17-02 Initials: 30									
•			,		00177	. Dato	~ // ()2	11 11 (als. <u>75</u>	!
ત જે	ત્વ.			Initia	al	Middle		Ending	
Pb (in. Hg)			28.59			28.52			
Room Temp (°F)			77			77		24.45 34 73 W	
Technician signature: Date: 1-2-03									

Control No. P-SFAO-0004 (Supplemental Data EPA 5G).doc, Effective date: 08/07/2000

Page 1 of 1

2-23092-42

Wood Heater Test Data EPA Method 5H

Number 3			EPA Method 5
Marufacturer	Hearth & Home Tech	Sample Para Control Module Number	21
Sove Wodel, Tracking Number	Northstar a	Test Weller y	0 992
Stove Type (call, not), or cerell)	ncat	Orfice dhiù	1 587
Project Number	961-5-50-3	Province Co	: 39
Test Cate	29-0ec-32	fire- we Derometry Pressure	23 32
ि∌झ ≧स्तर ^च णाव	10.36	Average Float Michael any cases Tay	20 05
Recording merve minutes:	5	OVN Euroment Numbers	
THE REPORTS THE TURNS	95	· · · · · · · ·	

			D	Aution Tunnel Ve	kocity Traverse !	Data				Caluacon Turar
	Pt.1	PL2	PL3	Pt.4	Pt.5	PL6	PL7	PLS	resident de la constitución de l	Fow Intial
instal oP	0.048	0 346	9.046	0 034	0 042	,,,,,,,	 -) (Times
ntial Tamp	173	173	.173	173	173	173	0.052	0.742	9420 oF	141.0 act/minute

Dikaton	WW (Strong)	28 56	Amoient CC2 (%)	0.534
Turnel	~2O (%)	4 30	Preferred Indial Samping Rate (of minute)	3 24
	<u></u>			
	<u></u>	Flu	e Gas	
	i		1	

3.46 0.121

Initial/Assumed Values

			Par	ticulate Samplin	ig System				Fire	Weight	T -												Moisture Conte	I, SWS		9.121	_1
				T	Ĭ	T	I		roci	Height.	 	Stov	e Flue-Gas Con	nitions		·			Slove Temp	भागापास (oF)			1	Dilutio	o Tunnel	,	Laborato
Exped Time	Try Tas Meter Reading 111	Sample Rate (cfm)	Onfice dH (inches wc)	Proportional Rate (%)	Ery Clas Meter Stragerature (F	Sample Tran Vacuum meter Hg i	monger Est Tamperature (F)		Nule Reading (that	Weight Change (libs)	Draft Pressure fincles aci	(2(3)	maye,	ത്ത്	Теперстыше (F	Air to Past Russ (Ib/Ib)	hindred Tep	Firebox Sugar	Firebox Back	Firebox Lest	finger Right	Average Surface Temperature (F	Temperature (F)	distriction	Static Pressure	(10202)	Aunen
0	723.400	100	0.15		76	0	79	236	17.8		-0 050	16,1	4.3	0.56	315	 	 		ļ			r Cinquia Mare (1	1	*41	inches «ci		fengeratu
5	724 670	0.254	0.25	100.0	7a	2	58	235	18.2	-1.8	-0.080	6.3	14.7	1,51		19.3	488	506	513	448	570	505	173	0.045	-0.55	0.790	78
10	726 170	0.300	0.28	94.8	ao	2	67	241	14.4	-1.8	-0.082	5.8	13.7	1,74	530	6.9	598	485	491	425	549	530	220	0.045	-0.55	3.540	79
15	727.770	0.320	0.31	97.1	83	2	67	243	12.1	-2.3	-0.082	6.5	13.0	·	623	7.2	905	468	474	413	541	560	263	0.045	-0.55	3.580	79
20	729.530	0.352	0.30	101,1	. 86	2	67	238	9.8	-2.3	-0.082	7.1	12.5	1.62	651	7.6	1009	452	460 ~	398	537	571	277	0.045	-0.55	3.590	81
25	731,200	0.334	0.33	96.2	. 88	2	56	234	8.1	-1.7	-0.084	7.4	12.0	1.60	665	7.8	1037	444	457	393	. 539	574	278	0.045	-0.55	3.460	81
30	733 000	0.360	0.29	96.9	. 90	2	65	241	6.5	-1,6	-0.061	3.5	17,2	1.21	672	8.3	1023	443	459	397	538	. 572	280	- 0.045	-0.55	3.480	82
35	734 540	0.328	0.27	95.8	92	2	56	245	5.3	-1.2	-0.079	9.3	}	0.59	636	9,3	978	448	467	411	536	568	271	0.045	-0.55	3.050	84
40	736.280	0.328	0.25	99.2	93	2	66	238	4.2	-1.1	-0.071	10.5	10.3	0.79	571	9.8	937	458	479	428	533	567	247	0.045	-0.55	2.560	83
45	737,770	0.298	0.22	95.2	94	2	56	239	3.5	-0.7	-0.070	11,5	9.5	0.33	509	10.9	878	471	495	453	531	566	224	0.045	-0.55	2.300	8.5
50	739.270	0.300	0.21	100.9	95	2	67	241	2.9	-0.6	-0.064	13.8	3.5	0.21	467	12.1	824	486	510	477	530	565	208	0.045	-0.55	1.930	83
55	740.740	0.294	0.20	- 101.5	96	2	67	235	2.5	-0.4	-0.060		5.4	0.20	422	15.4	751	502	524	458	530	561	190	0.045	-0.55	1.400	83
60	742.220	0.296	0.18	104,5	. 96	2	67	242	2.1	-0.4	-0.060	13.9	53	0.24	398	15.5	688	513	531	503	S27	552	180	0.045	-0.55	1,330	82
65	743.570	0.270	0.19	98.2	. 96	2	57	238	1.7	-0.4	-0.060	13.9	5.5	0.24	386	15.1	650	516	532	501	520	544	175	0.045	-0.55	1.330	83
70	744.980	0.282	0.17	102.2	97	2	65	241	1.3	-0.4	-0.057	13.6	6.6	0.23	381	14.9	522	517	531	497	1513	536	173	0.045	0.55	1.350	; ,62
75	748.250	0.254	0.16	96,9	97	2	85	240	1.0	-0.3	-0.055	13.4	6.6	0.25	371	14.9	602	516	528 -	491	506	529	169	0.045	-0.55	1.280	∵ 83
80	747.550	0.260	0.16	100.6	. 97	2	64	238	0.7	-0.3	-0.056	13.8	6.5	0.29	361	15.0	583	516	526	485	506	523	165	0.045	-0.55	1.240	82
85	748.870	0.264	0.16	102.7	97	2	64	240	0.5	-0.3	-0.055	13.5	6.5	0.31	355	15.0	567	516	524	480	509	519	163	0.045	-0.55	1.230	. 83
90 · ·	750.170	0.260	0.16	101.2	97	2	64	236	0.2			14,0	5.2	0.38	345	15.4	546	514	522	475	515	514	149	0.045	-0.55	1.160	. 82
95	751.469	0.260	0.15	100.5	98	2	65	238		-0.3	-0.051	13.9	5.7	0.44	340	16.3	536	512	522	471	521	512	157	0.045	-0.55	1.080	83
		Average				Maximum	Average	2-20	0.0	-0.2	-0.050	14,4	5.6	0.52	334	16.3	518	509	520	466	534	509	154	0.045	-0.55	1.040 -	82
a' Samping Time (minules)	Total Sample Volume (cf)	Samping Rate (clm)	Average Cinfice dH (inches wc)		Amrage Vets Temp (oF)		reproper Exit Temperature (F)	Average Hot Box Interior Temp (oF)	Total,Fuel: Burned (lbs)	Average Sample Interval Weight Change	Average Flue Draft (Inches wc)	Average Oxygen (% O2)	Average Carbon Dioxide (% CO2)	Average Carbon Monoxide (%CO)	Average Flue Temp (oF)	Average Air to Fuel Ratio (Ib/lb)	Average Firebox TopTemp (oF0	Average Firebox Sottom Temp (oF)	Average Firebox Back Temp (oF)	Average Firebox Left Side Temp (oF)	Average Firebol: Right Side Temp (oF)	Difference in (Bag. End) Stove Surface Temps (oF)	Average Dilution Tunnel Temp (oF)		Average Dilution Tunnel Static Pressure (inches wo)	Average Olluton Tunnel CC2 (%)	Avarage Laborato Ambert Te
95	26.069	0.295	0.22	99 34	91.3	2.00	66 50	239.10	17.80	-0.94	-0.07	11 36	8 63	0.87	466.60	12.65	742.00	489 50	503.25	455.45	S29 25	5	205.80	0.04	-0.55	2.04	(oF) 82.00

Control No. P-SSI-0005 (5H Emission Calculations).ds, Effective Date: 5/2/2022

Page 1 o

un 3a xbs

aboratories

Wood Heater Calculation Data EPA Method 5H

ain	3	
Manufacturer:	Hearth & Home Tech.	
Tracking No.:	Northstar a	
Test Date: _	20-Dec-02	_
wiect Number:	061-S-50-3	

Burn Rate (dry kg/hour)		4.25
Buill Hate (ary kg/Hour)	<u> </u>	

Emission Rate (grams/hour) = 8.12

ER (g/hour)

Note: When using the CO2 tracer-gas method,1/Qf (by tracer gas) = Si

	Dilution Tunnel Velocity	Fo (1.00 to 1.12)	Of by carbon balance	Qt-new	Of by tracer	1/Qf by tracer	Volume Sampled	Si Volume	Proportional	dH new
MTime (minutes)	(feet/second actual)	F0 (1.00 to 1.12)	(scf/minute)	(scf/minute)	(scf/minute)	gas (Si)	(dscf)	Sampled	Sample Rate	-7-77
0.24.35	4. (66	5 (O3) A		141.0	25.0	0.040				
5	16.5	0.95	24.9	136.7	32.7	0.031	1.175	0.047	100.0	0.254
10	17.0	1.03	29.3	132.6	34.4	0.029	1.383	0.042	94.8	0.280
15	17.2	1.03	39.3	131.3	36.0	0.028	1.470	0.043	97.1	0.305
20	17.2	1.04	40.6	131.2	36.1	0.028	1.608	0.045	101.1	0.304
25	17.2	~ 1.07 [‡]	31.9	131.0	37.7	0.026	1.518	0.042	96.2	0.332
30	17.1	1.08	33.3	131.8	35.6	0.028	1.630	0.043	98.9	0.295
35	16.8	1.08	26.3	134.1	34.3	0.029	1.479	0.042	95.8	0.272
40	16.5	1.07	26.9	136.3	32.6	0.031	1.474	0.043	99.2	0.246
45	16.3	1.09	19.0	137.9	30.9	0.032	1.337	0.041	95.2	0.220
50	16.1	1.09	20.6	139.8	30.0	0.033	1.343	0.043	100.9	0.207
55	16.0	1.09	13.9	140.9	29.1	0.034	1.314	0.044	101.5	0.195
60	15.9	1.06	13.5	141.5	28.4	0.035	1,320	0.045	104.5	0.185
65	15.9	1.09	13.4	141.7	28.4	0.035	1.204	0.042	98.2	0.185
70	15.8	1.11	13.3 114	142.1	27.0	0.037	1.258	0.044	102.2	0.167 <
75	15.8	1.10	10.1	142.6	26.6	0.038	1.131	0.042	96.9	0.162
80	15.8	1.11	10.1	142.8	26.4	0.038	1.158	0.044	100.6	0.160
85	15.6	1.08	6.9	144.5	26.4	0.038	1.175	0.044	102.7	0.160
90	15.7	1.18	11.0	143.5	26.5	0.038	1.158	0.044	101.2	0.161
95	15.7	1.10	7.3	143.9	26.0	0.038	1.157	0.044	100.6	0.155
est Completion	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet	No Data Yet	No Data Y
urther Data Input	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet	No Data Yet	No Data Y
urther Data Input	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet	111	No Data Y
urther Data Input	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet		
urther Data Input	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet	No Data Yet	
urther Data Input	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Yet	No Data Ye	No Data Yet	No Data Yet	No Data \
				T 400.4	1 60.5	0.033	1,331		99.3	0.224
verages/Totals	16.3	1.07	20.6	138.4	30.5	0.055	1.001		20.0	0.24,7

Woodstove Type	
Yhc>1=cat,2=ncat, 3=pellet	2
EPA's Hydrocarbon Constant (%)	1.32
Fuel Data	
Test Charge (as fired lbs)	17.8
Average Moisture (% dry basis)	20.05
Average Moisture (% wet basis)	16.70
Run Parameters	· · · · · · · · · · · · · · · · · · ·
DGM initial reading (cf)	723.400
DGM final reading (d)	751,469
Pb (inches Hg)	28.32
Tm (avg oF)	91.30
dH (avg inches wc)	0.22
Vm (scf)	25.256
Of by carbon balance (avg dscf/minute)	20.60
Analytical Data	
Probe/Front Wash (mg)	43.0
Front Filter (mg)	36.6
Impinger PM (mg)	68.8
Back Filter (mg)	17.4
Total Weight (mg)	165.8
Emission Results	
Cs (g/dscf)	0.0066

Final Laboratory Report - Method 5H Dilution Tunnel Particulate Calculations

		Equipment Numbers:	 Run No.:	3
	Northstar a		Date:	12/20/02
Project No.:	061-S-50-3	 		
Tracking No.:				
Hacking 2				

PARTICULATE COMPONENTS

Sample Component	Reagent	Filter # or	Weights						
		Volume, ml	Final, mg	Tare, mg	Blank, mg/ml	Particulate, mg			
A. Front filter catch	Filter	M141	642.1	605.5	1 1 2 1	36.6			
B. Rear filter catch	Filter	C828	138.0	120.6		17.4			
C. Rinse of probe and filter assembly (FRONT)	Acetone	180	105115.3	105072.3	0.0000	43.0			
D. Rinse of Impinger Set	Distilled Water	275	125618.4	125598.1	0.0000	20.3			
E. Rinse of Impinger Set	Dichloromethane	150	105918.9	105896.9	0.0000	22.0			
F. Rinse of filter assembly and gas train (BACK)	Acetone	150	107145.9	107119.4	0.0000	26.5			
· (Tota	al Particulate,	mg:	165.8			

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Rinse of probe and filter assembly (FRONT)	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
D. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
E. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
Rinse of filter assembly and gas train (BACK)	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg

CONDENSED WATER		Weights		
IMPINGERS	Final, g	Initial, g	Net, g	
. 1	704.7	650.0	54.7	
2	570.8	565.8	- 5.0	
3	543.8	543.4	0.4	
4	867.2	853.9	13.3	
		TOTAL, g:	73.4	

Analyst:	BO-	Date: _/- 3.03

Laboratory Report run 3 2-77 of 2-

EPA Method 4 Analysis Worksheet

Client/Location: Aladd Mulk shine	e Proj	ect #: <u>041-5-52-3</u>
Test Date: 12-20-02	Test Crew:	Run #: 3
Sample Train #: Assemb	oled by: C	leaned by:
F	ilter Identification	•
Front Filter 1st Filter # MIY!	Back Filter 1st Filt	er# <u>c</u> 827
2nd Filter #	2nd Filter #	
3rd Filter #	3rd Filter #	
Gravimetric A	Analysis—Condensed Water	
Impingers: 1 2	2 1 1	Total D.

,	G	ravimetric Ar	alysis—Cond	ensed Water		
Impingers:	1	2	3	4	Total	Ву
Final:	704.7	570.8	543.8	867.2		
Initial:	650.0	565.8	543.4	8539		
Net Weight (grams):	54.7	5.0	0.4	13.3	73.4	·BR

STOVE TEMPERATURE TEST DATA - METHOD 5G

Page 1 of [Run #; 3 Project #: 06.1-5-60-3 B. Opuis Test Crew: Client/Model: Aladdin Northsha OMNI Equipment ID #: Date: 12-20-02

						_							523	l 3												
		36		Catalyst	5/5																					
	Actual:	Coal Bed: 3.6		Flue	245	StS	747	00/	2 2	2017	2010	250	327	315												
) 	Bottom	165	594	560	275	575	(20)	1	2,2	585	573										+		
	/ 6	77 77 77 11 IDEC /2	0 0 0 0	даск	523	427	288	395	21/4	454	12%	111.	3,	348												
	Ω 20 20 20 20 20 20 20 20 20 20 20 20 20	TEMPERATIBES (25)	Diah+	all land	738	25%	144	465	502	54%	5552	à	260	5/6												
	0 = 0	ľ	D ft		437	474	755	459	18.7	517	53}	075	210	125												
		<u>,</u>	700		787	7+6	01/	1000	(044)	\$88	625	523	160						-	*						
Coal Bed:	Data:		Ambient	12	120	5,7	2 3	100	0 0	5	67	7	74													
		Stack		740-	-030	20.	130	1000-	1070	5 5 1	700	7:05/	050													
·		Delta	_4	\	3.7	0%	47	2 2	2/1	70	2 6	10:4	0.7													
rn Z		_		21.7	18.1	14.1	9.9				i	_!_	3.6													
Preburn	Test	į	A		19	20	30	40	20	09	707	25 PA	3	8	00	10	20	30	3 5	\$ 20	09	0/	80		AVG	

Technician signature: 🛆 📿 🚊

Date: 7-2-6-3

Control No. P-SFG-0004 (Wor.1s 'ove Temperature Test Data-Method 5G).sts, Effective date: 08/07/2000

2-290+2-42

FUEL DATA

71101-1	70 0 /2 //	1 racking #:	9 Project #: <u>06/-5</u>	-50-3
)ate: 12-20-02	Test Crew;	B Wavis	Run #:3	
OMNI Equipment ID #:		- Parket - P		
UEL LOAD PREPARED E UEL: DOUGLAS-FIR SF IMENSIONAL LUMBER	PECIES, UNTREA	كرين TED, AIR-DRIED, STAND	OARD GRADE OR BETTER,	
CALIBRATION: C	Cal Value (1) = 12%	PRE-BURN FUEL CONTENT (METER – DR Actual Reading Actual Reading	12	
3	fl	Readings 21 21 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Length of cut pieces: <u>*</u>	e/2 inches	Pre-Burn Fuel A	Average Moisture: 22.0	
Time (clock): <u>0740</u>	Room Tempe	rature (F): 70 Initi	als: <u> </u>	
FUEL TYPE AND AMOU CALCULATED LOAD W FUEL PIECE LENGTH:	NT: 2 × 4 / <u>EIGHT</u> : 1 5:9	TEST FUEL 3 4 × 4 ACTUAL LOAD	4 <u>2</u> WEIGHT: <u>8.2</u> (2× <u>7.6</u> (4× <u>17.8</u> Total	4) 4)
	MOISTURE C	ONTENT (METER DR)	Ý BASIS)	
PIECE		READINGS	TYPE	
1 2 3 4 5	19.0	21.9 19.2 19.5 19.5 20.1 19.0		
6 7 8 9	21.7	20.6 19.4	224	
6 7 8 9 10				
6 7 8 9 10	ALL TEST FUEL	LOAD MOISTURE A VER	AGE: 20.05	

Run Notes

Client	Model: Aladd, Noveshar A ing Number: 419 12-20-02 I Equipment ID Numbers:	LUIZ I TOU	Pro	oiect#:	061-5-50-3	
Track	ing Number: 419		Ru	n#: 3		
Date:	12-20-02	Test Crev	v: /.	50		
OMN	Equipment ID Numbers:	100.010.				
01		PREBURN				
nesc B	LIBE OR SKETCH AIR OR THERMOMST			w.		
DESCI	SETTINGS MUST BE ACCURATE AND	REPRODUC	ABLE)			
PRIMA	RY:	•	SEC	CONDAR	Y: dixed	
. [o 11					
ĺ	Sully open		TE	RTIARY:	_NA.	
	, , , , , , , , , , , , , , , , , , ,					****
- 1				-		7
			FA	٧;	on High	<u> </u>
L						
	PREBURN SET	TINGS AN	D ACTI	VITIES		
	AIR (THERMO) CHANGES	FAN	ADD	ADD		
TIME	PRIMARY/SECONDARY/TERTIARY	SETTING CHANGE	FUEL + WT.	FUEL	RAKE COAL	COMMENT
		CHANGE	+ W1.	- WT.		
Ø	Test setting					
61	J	 			\mathcal{X}	
İ	\\					
			·		*	
		TEST				
TEST FL	JEL CONFIGURATION SKETCH		ART UP P	ROCEDU	RES	
•	(INDICATE VIEW ANGLE) Side vier		PASS:	NA		
		ገ ^{FUI}	-		sed by 26 se	
	1/1/17/17	\ \ \ PRI	DOO MARY Al		ded by 201	560
		-3			7 0/2	·
		19 15			, ,	
		OTI	IER:	2 h- ,	times sot whe	ev d
]		2692	great FIT	-
ESCRIE	BE OR SKETCH TEST SETTINGS BELOV	W:				
PRIMAR.	MUST BE ACCURATE AND REPRODUCIBLE)		SECC	NDARY:	fixed	
			SECC	MDAKE,	1722	
ļ	selly open			4.		
			TERT	IARY:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
-	1					
			FAN:		on High	
						•
L				a.		
		, .	_			
	Technician signati	ure: <u>136</u>	<u> </u>	 	Date:	03 11 of 2 - 42
					ر - بر	リカナーな

Supplemental Data EPA 5G/5H

								: <u>061-5-50</u>	
								Booth:	
Test C	rew: _	B6) _{AUIS}		· · · · · · · · · · · · · · · · · · ·	Start T	īme: <u>10:30</u>	_ Stop Time	12:05
OMNI I	Equip	ment #	's:						· · · · · · · · · · · · · · · · · · ·
Gas Ar	alvza	r Train	امما	Chack	••	*			
	iaryze Stack:		rear	CHEC		ution Tunnol	(Mothod E	2 00/14	
`			4			ution Tunnel In			
		Final:	- grad	/		ir F	itial:	<u> </u>	
Calibrai								 _CO ₂ (DT): <u>/</u>	2.2
Calibra	10113.	Opan	Oas	C O 2.	<u></u>	2	00. <u>7.23</u>	_ CO ₂ (D1). <u>/</u>	20
	N ₂	Span	N ₂ S	pan	N₂ Span	N₂ Span	N₂ Span	N ₂ Span	N₂ Span
Time	Q	<u></u> グ	F	or	•			7	
02	0.0	10.6		10.5			==-		
CO ₂		97				· · · · · · · · · · · · · · · · ·			
СО	0.00			1.24					
O ₂ (DT)	0.00			1.25		_			· · · · · · · · · · · · · · · · · · ·
Stock D		/:- ol				·			
Air Volo	amer atti (#	er (inci	nes): _	- 8 - 1-	1 = 11/				
Socia A	ii) ۱:د. ان کاند	vmin): V	ווווו	aı;	2 30 m/m	— <u>~</u> Final:	2 50 Hm		
						Post Tes		_	
						moke Captui			-
					0 <u>0 3.1</u>		st: <u>0.0 c</u>		-
i ide Elb	e Cie	aneu P	TIOLIO	FIISU	rest in Sene	is: Date: <u>72-</u>	14.02	Initials: By	<u> </u>
				Initi	al	Mido	dle	Endi	ing
Pb (in	. Hg)			28.	3.2	28.32		28.32	
Room Te	mp (°	F)		78		84		82	
Technicia	an sig	nature	:_ <i>ß</i>				ate: <u>/-2</u>	-03	

Wood Heater Test Data

EPA Method 5H 1 537 061-5-50-3 oC equ" lgr⊂ 25-Dec-22 19 33 14 47

Sample Train Vacuum (inches Hg)

			Di	lution Tunnel Ve	slocity Traverse D	lata				Dilution Tunnel Flow
	PL1	Pt.2	Pl.3	Pt.4	PL5	Pt.8	PL7	PL8		Initial
P; letra	0.038	0.345	2546	0 344	:: 0 022	0 834	9 944	0.038	1120	142.4
oreal Temp	99	99	99	99	99	99	99	99	oF	act/minute

141.1 Impinger Kould, Vic (g) 5.55 0.073

Initial/Assumed Values

4 00

0.034

ישורו. נייני עמ	ASI DIU. GSI			=										Post-Test L	eak Check:	00598	ctured					-					
	Time minutes:	31	0	-													·		Stove Terra	peratures (oF)	1.5			Dilution	(unnel		Laboratory
			Parti	iculate Samplin	o System				Fuel V	Weight		Stove	Flue-Gas Con-	ditions	·			T	Jane 1 cmp	T	T			IP Valveny	State Pressure	.•	Auchent
		Sample Rate	Onface dH		I was time Medical	Nample Train Vactors sinches	1 *	•	Scale Reading	Weight Change (lbs)	Frait Pressure	1.02.34	लंड का	COLED	Temperature (F)	Air to Feel Razio (Ib/Ib)	Распи Тер	Freehort Bette etc.	Firebox Back	firebox left	Fachor Right	Average Surface Temperature (F)	Гегоритация (1)	Pressure citalies act	meters 401	(CQ (W)	femperature (b)
[jest	Dry Cas Meter Reading (cf)	(cfm)	(inches wc)	Rate (%)	leo persone (i ²)	Hā t	(F)	Compensione (1)	(85)					ļ		24.2	262	364	321	272	353	316	99	0.040	-0.44	0.350	88
		2 35-77-5-6	0.15	S. F. S. C.	82	0	85	234	18.3		-0.021	17.3	2.9	0.80	162		202		295	253	325	315	125	0.040	-0.44	0,750	69
	752.500				<u> </u>		67	241	17.1	-1.2	-0.042	14.1	3.4	0.51	252	14.8	391	299			267		151	0.040	-0.44	1 210	70
	755 150	0.255	0.15	100.0	- 85	<u> </u>	 	ļ	 	1,7	-0.060	128	7.9	0.42	349	12.6	543	298	288	295	362	377		 		4.000	
	757 360	0.271	0.24	103.0	99	2	65	241	15.4	-1.7				0.17		13.9	901	309	294	321	372	439	177	0.040	-0.44	1,950	
		0.364	0.72	103.5	94	2	55	235	12,9	-2.5	-0.064	13.4	7.3	0.17	<u> </u>			318	309	295	342	428	173	0.040	-0.44	1,770	72
	751 500	0.354				 		234	10.7	-2.2	-0.062	14.2	3.5	0.10	420	15.2	875	318		<u> </u>		· · · · · · · · · · · · · · · · · · ·	167	0.040	-0.44	1,660	72
	757.680	0.618	0.73	100.8	98	2	 		 	1.7	-0.061 -	14.2	5.3	0.12	398	15.7	- 795	321	322	299	332	1 414	107				72
	773 940	0.525	0.70	100.6	102	2	65	232	9.0	-1.7	-0.061	ļ <u> </u>		0.10	297	15.8	7/8	340	335	311	329	418	162	0.040	0.44	1,520	

Most Sampling Time (minutes)	Total Sample Volume (cl)	Average Sampling Rase	Average Onfice off (inches wo	Average Proportiona Rate (%)		Maximum r Sample Train Vacuum	Average Impinger Exit Temperature		Total Fuel Burned (fbs)	Sample	Average Flue Draft (inches wc)		Average Carbon Dioxide (% CO2)	Carbon Monoxida (%CO)	Average Flue Temp (oF)	Fuel Ratio (1b/to)	Firebox TopTemp (oF)	Firebox Botton Temp (oF)	Firebox Back Temp (oF)	Side Temp (oF)	Side Temp (al7)	Stove Surface Temps (oF)	(oF)	dP (inches wc)		CC2 (%)	(cF)	
310	846.365	0.224	0.09	104.6	97	2	55	238	0.0	-0.1 Average	-0.015	17.0	2.6	1.52 Average	1	Average Air to	Average	Average	Average	Average Firebox Left	Average Firebox Payhl	Difference in (Beg/End)	Average Dilution Tunnel Temp		Average Dilution Tunnel Static Pressure	Average Dauton Tunnel	Average Laboratory Ambient Ten	γ].
300	842,380 844,630	0.225	0.10	105.0	97	2	64	233	0.1	0.1	-0.014	16.3	2.8	1.57	144	21.2	226	234	247	204	28.5	233	96	0.040	-0.44	0.260	81	4
280	839.890	0.234	0.16	94.1	97	2	64	230	0.2	-0.1	-0,016	16.5	30	1.48	148	20.8	233	243	262	207	271	239	98	0 040	-0.44	0.290	82	
270	837.550	0.220	0.11	102.9	96	2	64	231	0.3	-0.1	-0.017	17.0	2.6	1.54	144	22.1	232	251	267	218	275	245	99	0.040	-0.44	0.310	82	
280	835.350	0.217	0.10	101.0	96	2	64	235	0.4	-0.2	-0.018	16.4	3.0	1.64	147	20.3	242	259	271	222	271	248	99	0,040	0.44	0.330	82	7
250 700	21.81 833.180 H251	0.208	0.10	91.5	95	2 2	66	233	0.8	0.1	-0.013	16.3	3.1	1.54	150	20.3	249	267	275	227	269 271	253	100	0.040	0,44	0.320	82	1
240		0.209	0.12	92.0	94	2	65 66	23/	0.7	-0.1	-0.018	16.1	3.5	1.65	152	18.7	253	272	282	231	263	261 258	101	0.040	0.44	0.320	83	н.
230	829.010	0.204	0.12	100.1	92	2	85	237	0.8	0.2	0.020	16.1	3.2	1.48	154	20.1	258	277	289	236	, 269	266	102	0.040	-0.44	0.360	82 %	
220	826.970	0.198	0.09	97.2	91	2	65	235	1.1	0.1	-0.020	16.3	3.2	1.59	155	3 19.8 C	264	290	297	243	274	272	102	0.040	-0.44	0.350	83	+
210	825.010	0.201	0.09	96.1	89	2	66	231	1.3	-0.1	-0.020	16.0	3.9	1.31	159	18.5	274	282	303	249	273	277	104	0.040	-0.44	0.380	84	+
200	823.000	0.219	0.09	100.4	93	2	66	234	1.4	-0.2	-0.022	16.1	3.9	1.26	154	19.3	290	285	309	253	, 280	281	104	0.040	-0.44	0.360	63 🗷	-
190	820 810	0.224	0.11	104.1	93	2	65	-231	1.6	-0.2	-0.022	15.8	4.1	1.26	150	18.7	296	292	315	260	280	267	103	0.040	0.44	0.380	-81 -S.	4
170	816.210 818.570	0.236	0.10	99.7	97	2	5 5	234	1.8	-0.2	-0.020	15.3	4,4	1.24	165	-17.4 18.1	292 259	297	318	266	279	290	100	0.040	-0.44	0.420	€ 80 📆	_
160	813.530	0.240	0.14	104.2	96	2	56	233	2.0	-0.2	-0.021	15.4	4.1	1.20	156	18.3	289	314	334 323	271	276	293	100	0.040	0.44	0.440	80 🛣	
150	811.230	0.275	0.15	106.0	96	2	66	231	2.2	-0.1	-0.021	16.6	2.7	1.87	167	20.5	288	322	340	294	279	300	100	0.040	-0.44	0.450	- 79 E	
140	808.480	0.256	0.15	98.5	96	2 2	66	235	2.3	-0.2	-0.021	16.5	2.7	1.74	171	21.0	303	331	349	304	299	305	99	0.040	0.44	0.320	78	1
130	805.920	0.272	0.15	91.6	96	2	65	237	2.5	-0.1	-0.022	16.5	3.2	1.22	180	21.1	331	344	363	320	302	315	101	0.040	044	0.330	- 76	1
120	803.200	0.313	0.19	96.5	100	2	54	232	2.7	-0.1	-0.030	16.2	3.8	1.06	199	19.6	. 366	353	372	332	305	346	108	0.040	-0.44	0.390	74 Juli	1
110	800.070	0.380	0.23	97.5	100	2	55	233	30	-0.3	-0.032	15.1	3.6	0.88	218	20.9	403	36 t	378	343	313	360	122	0 040	0.44	0.500	76 77	+
100	796 270	0.372	0.32	89.8	100	2	65	232	3.3	-0.6	-0.048 -0.040	15.9 16.0	1.1	0.75	252	19.6	473	367	382	351	313	377	122	0.040	-0.44	0 610	75	-
80	792,550	0.373	0.36	93.7	101	2	64	234	3.9	-0.8	-0.050	15.2	5.1	0.21	. 292	18.5	541	371	380	357	31#	363	132	0.040	-0.44	0.850	69 .	1
70	788.820	0.439	0.32	89.0	103	2	64	233	4.7	-1.1	-0.051	15.2	5.0	0.16	332	18.4	562 597	391	375	356	317	407	129	0.040	-0.44	0.950	70 %	
80	779 450 784 430	0.551	0.59	90.4	104	2	54	235	5.8	-1.5	-0.057	14.9	3.1	0.18	368	16.0	750	352 365	349 364	344	324	412	148	0.040	-0.44	1.070	71] .
50	773 940	0.525	0.70	100.6 90.8	102	2	55	236	7.3	-1.7	-0.060	14.7	8.3	0.10	383	15.8	776	340	335	311	329	421	158	0.040	-0.44	1,340	72	1
40	757.980	0.618	0.73	100.8	98	2	64	232	9.0	-1.7	-0.061 -	14.2	5.3	0.12	398	15.7	795	321	322	299	332	414	167	0.040	0.44	1,520	72	1
30	751 500	0.364	0.72	103.5	94	2	55	235	12.9	-2.2	-0.062	14.2	3.5	0.10	420	15.2	875	318	309	295	342	426	173	0.040	-0.44	1,660	72	1
20	757 360	0.271	0.24	103.0	99	_ +				-2.5	-0.064	13.4	7.3	0.17	431	13.9	901	305	294	321	372		- "	0.040		1,770	72	1

Wood Heater Calculation Data EPA Method 5H

Run	4
Manufacturer:	Hearth & Home Tech:
Model/Tracking No.:	Northstar a
Test Date:	20-Dec-02
Project Number:	061-S-50-3

	1.34
Burn Rate (dry kg/hour) =	1.34
Burn Bale idiv Ku/NUUI -	
	<u> </u>

·	
	0.01
Emission Rate (grams/hour) =	231
Emission Rate (dialis/11041) -	
21711001011110	

Note: When using the CO2 tracer-gas method,1/Qf (by tracer gas) = Si

Elapsed Time (minutes)	Dilution Tunnel Velocity (feet/second actual)	Fo (1.00 to 1.12)	Of by carbon balance (scf/minute)	Qt-new (scf/minute)	Qf by tracer gas (scf/minute)	1/Qf by tracer gas (Si)	Volume Sampled (dscf)	Si * Volume Sampled	Proportional Sample Rate	dH new
0.00	Strange (Cost and Strange)	50 2257(0S) 3334	er som som som som som som som som som som	142.4	15.7	0.064				
10	14.4	1.02	19.9	138.9	15.6	0.064	2.335	0.149	100.0	0.145
20	14.7	1.00	24.1	136.0	20.3	0.049	2.468	0.158	103.0	0.244
30	15.0	1.02	38.8	133.2	35.1	0.028	3.291	0.162	103.6	0.723
40	15.0	1.01	37.4	133.6	35.3	0.028	5.544	0.158	100.8	0.726
50	14.9	1.05	30.0	134.3	34.8	0.029	5.576	0.158	100.6	0.701
60	14.8	0.98	30.1	134.8	32.0	0.031	4.872	0.140	90.8	0.587
	14.8	0.97	26.9	135.3	29.1	0.034	4.379	0.137	90.4	0.488
70	14.7	0.94	20.1	136.6	23.7	0.042	3.866	0.133	89.0	0.324
80	14.4	1.09	16.5	138.5	25.1	0.040	3.289	0.139	93.7	0.363
90	14.5	1.00	12.5	138.2	23.7	0.042	3.292	0.131	89.8	0.324
100	14.4	1.09	6.6	139.4	19.7	0.051	3.369	0.142	97.5	0.226
110	14.4	1.17	7.1	139.4	18.2	0.055	2,774	0.141	96.5	0.192
120	14.4	1.08	2.2	141.3	16.0	0.063	2.411	0.132	91.6	0.149
130		1.13	2.4	142.0	16.0	0.063	2.277	0.142	98.6	0.149
140	14.1	1.16	4.7	142.3	15.8	0.063	2.454	0.154	106.0	0.146
150	14.1	1.15	2.3	142.2	15.3	0.066	2.142	0.136	93.9	0.136
160	14.1	1.15	4.1	142.1	14.5	0.069	2.303	0.151	104.2	0.123
170	14.1		3.9	142.1	13.2	0.076	2.099	0.144	99.7	0.102
180	14.1	1.10	4.1	142.1	13.5	0.074	1.995	0.151	104.1	0.107
190	14.1	1.07	4.2	141.7	12.7	0.079	1.965	0.146	100.4	0.094
200	14.1	1.05	2.2	141.6	12.6	0.079	1.803	0.142	98.1	0.094
210	14.1	1.08	4.2	141.6	12.7	0.079	1.771	0.141	97.2	0.095
220	14.1	1.07		141.8	14.2	0.071	1.837	0.145	100.1	0.118
230	14.1	1.13	2.2	141.8	14.2	0.071	1.879	0.133	92.0	0.117
240	14.1	1.18	4.5	141.0	13.4	0.075	1.863	0.132	91.5	0.104
250	14.1	1.09	2.1		13.4	0.076	1.940	0.145	101.0	0.102
260	14.1	1.16	2.3	142.0	13.7	0.073	1.963	0.148	102.9	0.110
270	14.1	1.15	4.6	142.1	16.4	0.073	2.088	0.152	105.6	0.157
280	14.1	1.13	2.5	142.2	10.4	0.001	2.000		.1	

Woodstove Type	
Yhc>1=cat,2=ncat, 3=pellet	22
EPA's Hydrocarbon Constant (%)	1.32
Fuel Data	
Test Charge (as fired lbs)	18.3
Average Moisture (% dry basis)	19.83
Average Moisture (% wet basis)	16.55
Run Parameters	
DGM initial reading (cf)	752.600
DGM final reading (cf)	846.865
Pb (inches Hg)	28.34
Tm (avg oF)	95.94
dH (avg inches wc)	0.23
Vm (scf)	84.162
Of by carbon balance (avg dscf/minute)	10.64
Analytical Data	
Probe/Front Wash (mg)	25.5
Front Filter (mg)	51.8
Impinger PM (mg)	168.0
Back Filter (mg)	59.3
Total Weight (mg)	304.6
Emission Results	
Cs (g/dscf)	0.0036
ER (g/hour)	2.31
Ci (Wildely	

Run 4a.xls

Loratorie!	10 T 24	
	100	
	1000 T	ONE.

14.1 1.23 2.4 1.40 0.000 1.001 0.151	5.0 0.101
600	5.0 0.101
14.1 1.13 2.0 142.0	4.6 0.092
310	
14.3 1.09 10.6 139.9 18.6 0.060 2.712	3.3 0.233

Final Laboratory Report - Method 5H Dilution Tunnel Particulate Calculations

Client Name:	Aladdin Hearth Products	Equipment Numbers:	 Run No.:	4
M∞del:	Northstar a		 Date:	12/20/02
Project No.:	061-S-50-3	· · · · · · ·		
Tracking No.:	419			
a jar				

PARTICULATE COMPONENTS

Sample Component	Reagent	Filter # or	Weights							
		Volume, ml	Final, mg	Tare, mg	Blank, mg mi	Particulate, mg				
A. Front filter catch	Filter	M146	652. 5	600.7	,	51.8				
B. Rear filter catch	Filter	C830	179.1	119.8		59.3				
C. Rinse of probe and filter assembly (FRONT)	Acetone	80	110170.4	110144.9	0.0000	25.5				
D. Rinse of Impinger Set	Distilled Water	325	132469.0	132383.6	0.0000	85,4				
E. Rinse of Impinger Set	Dichloromethane	150	100722.3	100689.2	0.0000	33.1				
F. Rinse of filter assembly and gas train (BACK)	Acetone	170	99661.2	99611.7	0.0000	49.5				
3-34-4			Tota	al Particulate,	mg:	304.6				

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Rinse of probe and filter assembly (FRONT)	(Final, mg - Tare, mg) - (Blank, mg/ml x-Volume, ml) = Particulate, mg
D. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
E. Rinse of Impinger Set	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg
Rinse of filter assembly and gas train (BACK)	(Final, mg - Tare, mg) - (Blank, mg/ml x Volume, ml) = Particulate, mg

CONDENSED WATER		Weights	
IMPINGERS	Final, g	Initial, g	Net, g
1	748.9	647.7	101.2
2	585.4	566.4	19.0
3	545.0	541.9	3.1
4 .	885,0	867.2	17.8
		TOTAL, g:	141.1

Analyst: 30	Date: 1-3.63	
-------------	--------------	--

(SH Laboratory Report) xls, Effective Date: 3/14/2002

Page 1 of

2-37 sta -42

EPA Method 4 Analysis Worksheet

Client/Location	on: <u>Aladd</u> ~	P	roject #: <u>04/</u>	-S-50-5	3							
Test Date:	st Date: 12-20-02 Test Crew: 13D Ru											
Sample Trair	ı #: <u>/</u> 4	_ Assemble	ed by:	BR	, ·	Cleaned by:	124	<u> </u>				
		Filt	er Ider	ntification	on		-					
Front Filter	1st Filter# "	1146		Back F	ilter 1st F	ilter #	•					
2nd Filter#_				2nd Fi	lter#	•						
3rd Filter # _				3rd Fil	ter #							
	G	ravimetric An	alysis-	—Cond	ensed Water			—				
Impingers:	1	2		3	4	Total	Ву					
Final:	748.9	585,4	5	15.0	885.0							
Initial:	56.97	566.Y	5	41.9	867.2							
Net Weight (grams):	101.2	190		2 1	17 8	141.1						

STOVE TEMPERATURE TEST DATA - METHOD 5G

Page 1 of 1 Tracking #: 419 Run #: Client/Model: Ala Jdr Nollshar A Project #: 061-5-50-3 Test Crew: B. OAWS OMNI Equipment ID #: Date: 12-10-01

	>		Catalyst	Q / V																				
1014	Actual: Coal Bed: 44	•	Flue	<u></u>	30.4	2 4/.	2,0	202	127	, , ,	2/2													
<	7 C C		_		ľ	-	-	 	\vdash		<u> </u>									-		-		
	١,,	JF)	Bottom	494	403	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	438	アング	20%	34/	37.8													
,	3.7-4.5	'URES (Back	404	7//5	262	34/	347	322	300	276	4												
	Range: 3.7-4.5	TEMPERATURES (OF	Right	\$0\$	515	444	443	404	377	357	372													
			Left	505	415	tth	445	///	382	35.5	179													
	0 = 0		Top	975	124	536	440	37/	317	289	37.5	X												
Coal Bed:	Data:		Ambient	20	λt	77	14	70	30	69	67													
		_	Draft	070	044	03/	630	025	623	.021	12021													
		Delta	Weight		0.9	0.3	0 3	0.1	0.8	0.6	0.7													
X		Fuel	Weight	7.0	(1.7)	5.8	5.5	5.4	46	45/	4.4													
Preburn X	Test		Time	0	10	20	30	40	20	99	70	80	06	00	10	20	30	40	20	09	20	80	06	(

361 354 313

Technician signature:

Control No. P-SFG-0004 (Woudstove Temperature Text Data-Methes/ 5G),xls, Effective date: 08/07/2000

Date:

2-390/2-42

FUEL DATA

The second secon		_ lracking #:_	7/7	Project #: 0	941-3-5-13
Client / Model: Aladd. No. Date: 12-20-02 To	est Crew: 15 6	DAVIS		Run #:	4
OMNI Equipment ID #:	 				
FUEL LOAD PREPARED BY:	BOAUS B, UNTREATED,	AIR-DRIED, ST	TANDARD GR	ADE OR BETT	ER,
j calibration, cal valu	PR <u>OISTURE CONT</u> te (1) = 12% te (2) = 22%	Actual Pendia	-DRY BASIS)	
I(19.5 22.4	Readings 20, 2 21, 8	20.1 218	Type 2ry 2ry	
Length of cut pieces: <u>* e /2</u>	inches	Pre-Burn F	Fuel Average M	oisture: 31.	o
Time (clock): 1215 Ro	om Temperature	(F): 7 5	Initials:	21.	
	· · · · · ·				
					
EUEL TANDE AND AS	1.	EST FUEL			· ·
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGHT FUEL PIECE LENGTH: 2	2 × 4	3ACTUAL LO.	4×4 2 AD WEIGHT: DRYBASIS)	8,2 10, 1 18, 3	(2 × 4) (4 × 4) Total
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGHT FUEL PIECE LENGTH: MOI PIECE	STURE CONTE	3ACTUAL LO. VT (METER DINGS	4×4 2 AD WEIGHT: DRYBASIS)		(2 × 4) (4 × 4) Total
PIECE 1	STURE CONTE	NT (METER DINGS	DRY BASIS) 7.8- 7.3	8,2 10, 1 18, 3 TYPE 2 × y 2 × y 2 × y 4 × y 4 × y	(2 × 4) (4 × 4) Total
PIECE 1	REA 19.9 19.1 19.8 20.5 2.2	NT (METER DINGS 19.3 8.9 7.0 1.7 1.7 2.6 20.	DRY BASIS) 7.8- 7.3- 7.4	1YPE 2 × y 2 × y 2 × y 4 × y 4 × y	(2 × 4) (4 × 4) Total
PIECE 1	REA 19.9 19.8 19.8 20.5 2.9.2 2.2 2.5 2.5 2.5 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7	NT (METER DINGS 19.3 8.9 7.0 1.7 1.7 2.6 20.	DRY BASIS) 2.8- 9.3 9.4	TYPE 2×y	

2-40 of 2-42

D.	TATE (
Kun	Notes

I	Run No	tes				
Client/Model: Aladda Northshaa Tracking Number: 417	4		*	<i>.</i>		
Tracking Number: 41?		P.	roject #:	061.5-50-3	· · · · · · · · · · · · · · · · · · ·	
Date: 12-20-02	Test Cre	nir A	un #:9			
OMNI Equipment ID Numbers:	1031 010	·w <u>/</u> 5_	WARY			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DDEDIM					
DESCRIBE OR SKETCH AIR OR THERMOMS (SETTINGS MUST BE ACCURATE AND	PREBURN FAT SETTIN REPRODUC	OC DEL O	W:			
PRIMARY:			CONDAR	Y: <u>fixed</u>		
The closed	area					
0.5° ////		TE	RTIARY:	: _NA .		
		FA	N:	on high		
PREBURN SET	TINGS AND	D A CTT	. Torres		·····	
ATD CITIED IOS CITATION	FAN	ADD	ADD	· · · · · · · · · · · · · · · · · · ·	T	
TIME AIR (THERMO) CHANGES PRIMARY/SECONDARY/TERTIARY	SETTING CHANGE	FUEL	FUEL - WT.	RAKE COAL	COMMEN	
9 Test setting						
.5			0.614	, ×		
		.				
				, ·		
TEST FUEL CONFIGURATION SKETCH	TEST					
(INDICATE VIEW ANGLE)	BYP	RT UP PR ASS:	OCEDUF 114	XES		
		L LOADII		30 sec		
		DOOF	2: 6/0	sed by 43	Sec	
12/12/02/	PRIN	IARY AII	۶: <u>۴.//</u>		1:55 The	
			Sir	to Lest sotting	<u>, </u>	
	OTH	ER:	2 ha	-timer set	when dr	
				1/2 spend		
DESCRIBE OR SKETCH TEST SETTINGS BELOW (SETTINGS MUST BE ACCURATE AND REPRODUCIBLE) PRIMARY:	:		•			
The state of the s		SECO	DARY:	fired		
Same as Above					··· 	
		TERTI	ARY:	NA	······································	
						
		FAN:		-10 0 0 1		
		rau.		off 6- 1.4		
			•	Them sith	4.9 <u>L</u>	
Technician signature	:_B6	<u> </u>		Date: _ /- 2 =:	3	
Introl No. P-SFAK-0003 (Run Notes).doc, Effective date: 08/07/2000	· •			Date: 1-20 2-41 Pag	10f2-42 ge 1 of 1	

Supplemental Data EPA 5G/5H

Client /	Mode	el: <u>A/a</u>	dd	North	she A		Project No.:	041-5 - 50	- 3
Tracking No.: 4/1 Date: 12-20-0					le: <u>/2-20-02</u>	Run N	o.: <u> </u>	Booth:	
Test Crew: Start Tim						ime: <u>/ 4:40</u>	_ Stop Time	: 19: <i>80</i>	
OMNI E	quipi	ment #	's:		· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · ·			
		_ :		<u> </u>					
Gas An			Leak	Check					
5	Stack:				Dil	ution Tunne		• •	
	Initial:gowl						nitial:		
		Final:	gra	<u>-{</u>		F			
Calibrat	ions:	Span	Gas	CO ₂ :	<u>7.96</u> 0	2: 106	CO: <u>/.23</u>	CO ₂ (DT): _	1.26
	A 1 6	<u> </u>			N O		I	T	
		Span		pan	N₂ Span	N₂ Span	N₂ Span	N₂ Span	N₂ Span
Time		<i>J</i>	E	7					
02		NL	ł	10.5					
CO ₂	0.0	9.9		100					
CO	0.00	ال.2./	l	1.26					· · · · · · · · · · · · · · · · · · ·
O ₂ (DT)	0.00	1.24	0.01	1.24					
Stack Di	amete	er (incl	nes):	۶ ^			المراجع المستوسي		
* *						Final: <u>∠</u>	50.01/-		
						Post Tes	•		
•						moke Captu			
Pitot Tub	e Lea	k Test	t: Pre:	(י)	003	2_ Pc	ost oo	3 4	
Flue Pipe	e Clea	aned P	rior to	First 7	est in Serie	 es: Date: ∠	2 · / 2 · / 2 · / 2	Initials:	-
					001, 001,0	.o. Dato	- //	11 III. 1010	
				Initi	al	Midd	dle	End	ina
Pb (in. Hg) 28. 32									
	Room Temp (°F) 68				28 75		28, 35		
	Technician signature: Date:								