Non-Confidential Business Information (Non-CBI)

Certification Test Report

Hearth and Home Technologies Freestanding Wood Stove

Brand: Quadra-Fire

Model(s): 31M-ACC-C, Discovery-II-C, FF-WP-200

Prepared for: Hearth and Home Technologies

1445 North Highway Colville, WA 99114

Prepared by: OMNI-Test Laboratories, Inc.

13327 NE Airport Way Portland, OR 97230 (503) 643-3788

Test Period: February 13, 2017 – February 16, 2017

Report Date: March 21, 2017

Report Revision Date: November 13, 2024

Report Number: 0061WS066E.REV002

All data and information contained in this report are confidential and proprietary to Hearth and Home Technologies. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from Hearth and Home Technologies and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. name, logo, or registered mark (O-TL) is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

-Report Edition Number (004) 11/13/24 -

AUTHORIZED SIGNATORIES

This report has been reviewed and approved by the following authorized signatories:

Technician:

Riley Tiegs

Technician

OMNI-Test Laboratories, Inc.

Evaluator:

Ken Morgan

Technical Services Director OMNI-Test Laboratories, Inc.

TABLE OF CONTENTS

	PREFACE	(3 pages)
1.	SAMPLING PROCEDURES AND TEST RESULTS	4
	Introduction	
	Individual Run Summaries.	
	Individual Run Summaries	
	Summary Tables	,
	Table 1 - Particulate Emissions Results	8
	Table 2 - Particulate Emissions Results (First Hour)	
	Table 3 – B415.1 Efficiency and CO Emissions	
	Table 4 - Test Facility Conditions	
	Table 5 - Fuel Measurements and Crib Descriptions - Pretest	
	Table 6 - Fuel Measurements and Crib Descriptions - Test	
	Table 7 - Dilution Tunnel Gas Measurements and Sampling Data	
	Table 8 – Average Temperature Data	
	Table 9 - Pretest Configurations	
	Table 10 - Test Configurations	
2.	PHOTOGRAPHS/APPLIANCE DESCRIPTION/DRAWINGSFuel Photographs	14
3.	TEST DATA BY RUNRun 1	22
	Run 2	
	Run 3	
	Run 4	
	Run 5	
	Ruii J	
4.	QUALITY ASSURANCE/QUALITY CONTROL	88
т.	Sample Analysis	
	Calibrations – EPA Method 28R, ASTM E2515, ASTM E2780	
	Example Calculations	
5.	TEST INSTRUCTION RECOMMENDATIONS, LABELING, & OWNER'S MAN	UAL138
	Appendix A Firebox Volume	
	Appendix B Revision History	

Section 1

Sampling Procedures and Test Results

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

INTRODUCTION

Hearth and Home Technologies retained *OMNI* to perform U.S. Environmental Protection Agency (EPA) certification testing on the 31M-ACC-C wood stove. The 31M-ACC-C wood stove is a freestanding-type room heater. The firebox is constructed of mild steel. Usable firebox volume was measured to be 1.89 cubic feet and the stove is vented through a 6" collar located on the top of the appliance near the rear of the firebox.

The testing was performed at Hearth & Home Technologies. The altitude of the laboratory is 1635 feet above sea level. The unit was received in good condition and logged in on February 12, 2017, then assigned and labeled with *OMNI* ID #2153. *OMNI* representative Bruce Davis conducted the certification testing and completed all testing by February 16, 2017.

This report is organized in accordance with the EPA-recommended outline and is summarized in the Table of Contents immediately preceding this section. The results in this report are limited to the item submitted.

SAMPLING PROCEDURE

The 31M-ACC-C wood stove was tested in accordance with the U.S. EPA 40 CFR Part 60, Subpart AAA – Standards of Performance for New Residential Wood Heaters using EPA Method 28R, ASTM E2515 and ASTM E2780. Particulate emissions were measured using sampling trains consisting of two filters (front and back).

The model 31M-ACC-C was tested for thermal efficiency and carbon monoxide (CO) emissions in accordance with CSA B415.1-10. Efficiency results were calculated using spread sheet Version 2.2 created 12/14/2009 and distributed by CSA. Example calculations for CSA B415.1 were not provided by CSA; spreadsheet is protected from modifications by means of a password.

SUMMARY OF RESULTS

The weighted average emissions of the four test runs included in the results indicate a particulate emission rate of 1.9 grams per hour. Run number 4 was a fan confirmation test to confirm operation of the appliance without the optional fan in operation. The 31M-ACC-C results are within the emission limit of 2.0 g/hr for affected facilities manufactured on or after May 15, 2020.

The proportionality results for test runs 2 through 5 were acceptable, run number one had one data point outside of acceptable limits due to an equipment malfunction at the start of run 1. After loading the fuel, it was noted that the dry gas meter volume on box B was not increasing. An investigation found the pump to be working and the reference pressure (delta H) to be indicating flow to the gas meter. An inspection of wire connections found a loose connection between the totalizer on the gas meter and the data logger, this caused no signal to be sent even though sample flow was moving through the system normally. Additional evidence sampling was working normally is shown in the precision in emissions results between train A and train B. Any deviation in sampling between the two trains would generate unacceptable results. The loose connection was assumed to have been caused during shipping of the equipment, after fixing the issue no additional problems were encountered during the test series. Quality check results for each test run are presented in Section 2 of this report.

INDIVIDUAL RUN SUMMARIES

- Run 1 Attempted category 1 burn rate with a primary air setting of full closed. Observed burn rate of 0.99 kg/hr (category 2). An equipment problem caused one data point to be outside specified proportional rate limits, see summary of results for details. A filter change scheduled for one hour into the test was overlooked until 80 minutes, results shown in this report show calculated emissions at 60 and 80 minutes. Since this result is not used for certification and no other sampling anomalies occurred, this test run is valid and appropriate for inclusion in the weighted average.
- Run 2 Attempted category 2 burn rate at primary air setting of 1.29" open. Observed burn rate of 1.39 kg/hr (category 3). No sampling anomalies occurred, so this test run is valid and appropriate for inclusion in the weighted average.
- Run 3 Attempted category 2 burn rate at primary air setting of 1.00" open. Observed burn rate of 1.14 kg/hr (category 2). No sampling anomalies occurred, so this test run is valid and appropriate for inclusion in the weighted average.
- **Run 4 -** Attempted category 2 burn rate at with primary air control fully closed. Observed burn rate of 1.04 kg/hr (category 2). No sampling anomalies occurred, the appliance was operated without the fan in operation as a fan confirmation test so this test run is not used in the weighted average.
- Run 5 Attempted category 4 burn rate at primary air setting of fully open. Observed burn rate of 2.26 kg/hr (category 4). Negative filter weights were found in both A and B sample trains, negative catch on the filters can be seen as positive transfer weight on the O-ring gaskets. Negative filter weights are added back into the total catch to prevent transfer weight on O-rings from being counted as emissions. No additional sampling anomalies occurred, so this test run is valid and appropriate for inclusion in the weighted average.

CATEGORY 1 BURN RATE RATIONALE

EPA Method 28 section 8.1.1.3.2 states the following:

Evidence that a wood heater cannot be operated at a burn rate less than 0.80 kg/hr shall include documentation of two or more attempts to operate the wood heater in burn rate Category 1 and fuel combustion has stopped, or results of two or more test runs demonstrating that the burn rates were greater than 0.80 kg/hr. when the air supply controls were adjusted to the lowest possible position or settings... NOTE: After July 1, 1990, if a wood heater cannot be operated at a burn rate less than 0.80 kg/hr., at least one test run with an average burn rate of 1.00 kg/hr. or less shall be conducted.

The U.S. Environmental Protection Agency Applicability Determination Index, under Control Number WDS-109, states the following regarding this requirement of Method 28:

The purpose of this requirement is to ensure that a good-faith effort has been made to achieve a Category 1 burn rate. However, if the air supply control is tamper-proof, EPA will accept one test as adequate documentation that the stove cannot achieve a Category 1 burn rate. Note that this applies only to stoves which do not reach the low burn rate because of limits on the air supply; manufacturers of stoves which cannot sustain a burn rate at lower air settings will still be required to submit documentation of two or more attempts. In all cases, a test series consisting of at least four runs is required.

As the Run Notes in Section 5 and Table 1.1a in Section 1 of this report show, run 1 was operated at a burn-rate of less than 1.0 kg/hr. with the combustion air inlet open an area of 0.44 in². The primary air control was designed and manufactured with a stop that provides an area of 0.44 in² when the control is set to the minimum position. See attached drawings of the primary air controls in the QC report. The air controls for this heater are tamper-proof. When tested in accordance with EPA Method 28 the heater cannot be induced to operate at a burn rate less than 0.80 kg/hr therefore Run 1 fulfills the requirements of the standard.

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Table 1 – Particulate Emissions

Run	Burn Rate (kg/hr dry)	ASTM E2515 Emissions (g/hr) Uncorrected ¹	ASTM E2515 Emissions (g/hr) Corrected ²
1	0.99	1.93	1.93
2	1.39	1.09	1.09
3	1.14	0.97	0.97
4*	1.04	1.27	1.27
5	2.26	3.92	4.29
Weighte	d particulate emission avera	ge of 4 test runs: 1.9 grams per hour.	

^{*}Fan confirmation run excluded from weighted average results

Table 2 – Particulate Emissions (First Hour)

Run	ASTM E2515 Emissions – First Hour (g/hr) Uncorrected ¹	ASTM E2515 Emissions – First Hour (g/hr) Corrected ²
1	5.85*	5.85*
2	3.11	3.11
3	2.31	2.31
4	4.04	4.04
5	5.27	5.27

^{*}Run 1 filter change occurred at 80 minutes. Corrected Emissions at 80 minutes is 4.36 g/hr.

¹Uncorrected refers to gravimetric analysis that takes negative filter weights as a negative value in cases where filter residue was transferred to (stuck to) O-ring gaskets to account for the mass transfer.

²Corrected refers to gravimetric analysis where negative filter weights are taken as zero, thus reporting a higher value by over-reporting of transferred filter material. The uncorrected values were added to this report in response to a request by the US EPA.

Table 3 – B415.1 Efficiency and CO Emissions

Run	Heat Output (BTU/hr)	HHV Efficiency (%)	LHV Efficiency (%)	CO Emissions (g/MJ Output)	CO Emissions (g/kg Dry Fuel)	CO Emissions (g/min)
1	13,951	75.2	81.3	6.36	94.71	1.56
2	17,979	69.7	75.3	4.08	56.38	1.29
3	15,810	74.9	80.9	4.17	61.93	1.16
4*	14,345	74.6	80.7	5.75	84.97	1.45
5	29,078	69.8	75.5	4.76	65.88	2.43

Weighted average HHV efficiency of 4 test runs: 72.5%.

Average grams per minute CO Emissions: (1.56 + 1.29 + 1.16 + 2.43) / 4 = 1.61 g/min.

Table 4 – Test Facility Conditions

	Room Tem (°F		Barometrio		Air Ve	
Run	Before	After	Before	After	Before	After
1	74	78	28.95	28.93	< 50	< 50
2	70	78	28.82	28.73	< 50	< 50
3	78	75	28.47	28.35	< 50	< 50
4	76	80	27.99	27.95	< 50	< 50
5	79	76	27.95	27.98	< 50	< 50

Table 5 - Fuel Measurement and Crib Description Summary - PRETEST

Run	Pretest Fuel Weight (Starting weight in lbs)	Pretest Moisture (Dry basis - %)	Coal Bed Weight (lbs)
1	5.5	19.47	2.7
2	6.1	19.03	3.1
3	5.9	19.70	3.1
4	5.6	22.00	3.0
5	14.7	20.65	2.8

^{*}Fan confirmation run excluded from weighted average results

Table 6 – Fuel Measurement and Crib Description Summary – TEST

Run	Test Fuel Wet Basis (lbs)	Firebox Volume (ft ³)	Fuel Loading Density Wet Basis (lbs/ft ³)	Test Fuel Dry Basis (lbs)	Piece Length (in)	2x4s Used	4x4s Used
1	12.7	1.89	6.72	10.5	14	3	2
2	13.3	1.89	7.04	11.2	14	3	2
3	12.5	1.89	6.61	10.5	14	3	2
4	12.7	1.89	6.72	10.7	14	3	2
5	12.1	1.89	6.40	10.0	14	3	2

Table 7 – Dilution Tunnel Gas Measurements and Sampling Data Summary

		Average	Dilution Tunnel Gas Meas	surements
Run	Length of Test (min)	Velocity (ft/sec)	Flow Rate (dscf/min)	Temperature (°F)
1	290	13.08	142.8	80
2	220	15.13	162.8	84
3	250	15.98	169.6	84
4	280	15.90	165.4	87
5	120	17.31	178.8	91

Table 8 - Average Temperature Data

Run	Beginning Surface Temperature Average ^a	Ending Surface Temperature Average ^a	Surface Delta T ^b
1	351	277	74
2	366	310	56
3	324	309	15
4	410	347	63
5	453	392	60
a. All te	emperatures are in degrees F.		
b. Repr	esents the difference between be	ginning and ending average surface	e temperatures.

 $Table\ 9-Pretest\ Configuration$

Run	Combustion Air	Fuel Added	Fuel Removed	Time (min)
1	Fully Closed	2.6	0	60
2	1.29"	2.4	0	60
3	1.00"	2.8	0	70
4	Fully Closed	2.4	0	60
5	Fully Open	13.7	0	65

Table 10 – Test Configurations

Run	Five-Minute Startup Procedures	Combustion Air
1	Fuel Loading: Fuel loaded by 45 seconds. Door: Closed by 60 seconds. Primary Air: Fully open until 5:00 then immediately set to test setting. Secondary: Air opening is fixed without adjustment. Fan: On high the entire test. Boost Air: Boost air activated when door was closed at 60 seconds.	Air set at mechanical stop, measured at 0.692"
2	Fuel Loading: Fuel loaded by 60 seconds. Door: Closed by 80 seconds. Primary Air: Fully open until 5:00 then immediately set to test setting. Secondary: Air opening is fixed without adjustment. Fan: On high the entire test. Boost Air: Boost air activated when door was closed at 80 seconds.	1.29"
3	Fuel Loading: Fuel loaded by 55 seconds. Door: Closed by 80 seconds. Primary Air: At test setting full 5 minutes. Secondary: Air opening is fixed without adjustment. Fan: On high the entire test. Boost Air: Boost air activated at 0 minutes then again when door was closed at 80 seconds.	1.00"
4	Fuel Loading: Fuel loaded by 60 seconds. Door: Closed by 85 seconds. Primary Air: Fully open until 5:00 then immediately set to test setting. Secondary: Air opening is fixed without adjustment. Fan: Off for the entire test. Boost Air: Boost air activated at 0 minutes then again when door was closed at 85 seconds.	Air set at mechanical stop, measured at 0.692"
5	Fuel Loading: Fuel loaded by 38 seconds. Door: Closed by 42 seconds. Primary Air: Fully open entire test. Secondary: Air opening is fixed without adjustment. Fan: On high for the entire test. Boost Air: Boost air locked open for entire test.	Air set to mechanical stop fully open.

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Section 2

Photographs/Appliance Description/Drawings

Hearth and Home Technologies 31M-ACC-C

Test Dates: February 13, 2017 – February 16, 2017

Hearth and Home Technologies 31M-ACC-C

Run 1 – Fuel

Run 1 - Newly Loaded Stove

Run 2 – Fuel

Run 2 - Newly Loaded Stove

Hearth and Home Technologies 31M-ACC-C

Run 3 – Fuel

Run 3 – Newly Loaded Stove

Run 4 – Fuel

Run 4 – Newly Loaded Stove

Run 5 – Fuel

Run 5 – Newly Loaded Stove

WOOD HEATER DESCRIPTION

Appliance Manufacturer: Hearth and Home Technologies

Wood Stove Model: 31M-ACC-C / Discovery-II-C

Type: Freestanding

WOOD HEATER INFORMATION

Materials of Construction: The unit is constructed primarily of mild Steel. The firebox is lined with fire brick that measures 4.5 x 9 x 1.25" thick. The feed door has a 15.63" x 11.5" glass panel and 34" gasket.

Air Introduction System: Primary combustion air enters the appliance through an opening located on the right side of the firebox near the top and front of the appliance. A control arm extends out the face of the unit, pushing the control downwards closes off the air opening. Air used for secondary has no user controls, combustion enters a manifold near the rear of the appliance and is channeled to four air tube mounted in the top of the firebox directly under the baffle. A third air source is located on the right side of the appliance near the bottom of the firebox. The control for this air source extends out the front of the appliance near the bottom right. Pushing the control in and releasing locks the control open providing combustion air to openings in the rear of the firebox and to an opening located in the front of the firebox near the floor. If this control is pushed in and then pulled out it activates a timer that slowly closes these openings over a time of approximately 22 minutes.

Combustion Control Mechanisms: All control mechanisms are manually controlled; the timer mechanism is manually set and once closed will not open again until manually reset.

Combustor: N/A.

Internal Baffles: A noncombustible baffle board is located above the secondary air tubes mounted in the top of the firebox. A ceramic wool blanket is used on top of the baffle for additional insulation.

Other Features: An optional fan is located near the bottom of the back of the appliance.

Flue Outlet: The 6" diameter flue outlet is in the top of the unit near the rear of the firebox.

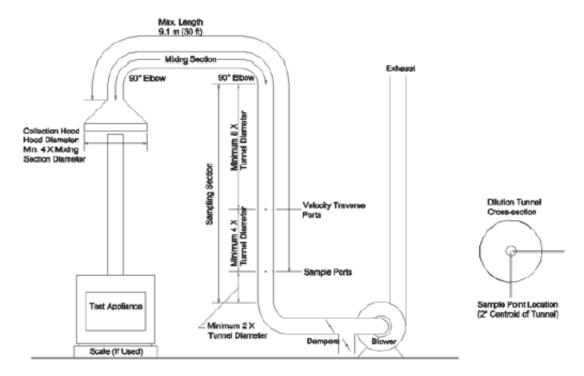
Similar Models: Stove model Discovery-II-C and FF-WP-200 shares all firebox designs and K list components. The most notable change is a taller pedestal designed for wood storage for the Discovery and door styling for the FF-WP-200. Shielding is mounted in the same locations but extends down to make up the sides and back of the pedestal. See engineering drawings for details.

WOOD HEATER OPERATING INSTRUCTIONS

Specific Written Instructions: See Section 5 of this report. All markings and instruction materials were reviewed for content prior to printing.

Engineering Drawings/Blueprints (K List)

Removed as confidential business information


Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Engineering Drawings/Blueprints (Remainder) Removed as confidential business information

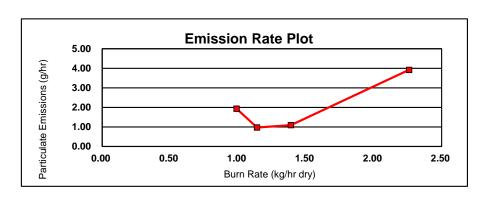
Section 3

Test Data by Run

Example of ASTM E2515-11 Dilution Tunnel

Prior to testing, sample point and travers point locations are verified to ensure placement is within specifications. Collection hood, tunnel diameter, and mixing section length are also verified to be within specifications.

EPA Weighted Average Emissions EPA Method 28R


Client: Hearth & Home Status: Final

Stove Model: 3100 ACC
Test Dates: 2/13/17 - 2/17/17
Project Number: 0061WS066E.R2

Tracking Number: 2153

Stove Type: Non-Catalytic Stove

Weighted Averages HHV Efficeincy (%): 72.5 LHV Efficeincy (%): 78.3

Run #	1	
Burn Rate (dry kg/hr)	0.99	
Category	2	
LHV Efficiency (%)	81.3	
HHV Efficiency (%)	75.2	
Emissions (g/hr)	1.93	
Weighting Factor	0.484	30.80%
Run #	3	
Burn Rate (dry kg/hr)	1.14	
	2	
Category LHV Efficiency (%)	80.9	
HHV Efficiency (%)	74.9	
Emissions (g/hr)	0.97	
Weighting Factor	0.317	20.19%
weighting ractor	0.517	20.17/0
Run #	2	
20011	2 1.39	
Burn Rate (dry kg/hr)		
Burn Rate (dry kg/hr) Category	1.39	
Burn Rate (dry kg/hr)	1.39 3	
Burn Rate (dry kg/hr) Category LHV Efficiency (%)	1.39 3 75.3	
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%)	1.39 3 75.3 69.7	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr)	1.39 3 75.3 69.7 1.09	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr)	1.39 3 75.3 69.7 1.09	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor	1.39 3 75.3 69.7 1.09 0.457	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor Run # Burn Rate (dry kg/hr) Category	1.39 3 75.3 69.7 1.09 0.457	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor Run # Burn Rate (dry kg/hr) Category LHV Efficiency (%)	1.39 3 75.3 69.7 1.09 0.457 5 2.26	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor Run # Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%)	1.39 3 75.3 69.7 1.09 0.457 5 2.26	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor Run # Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr)	1.39 3 75.3 69.7 1.09 0.457 5 2.26 4 75.5 69.8 3.92	29.08%
Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%) Emissions (g/hr) Weighting Factor Run # Burn Rate (dry kg/hr) Category LHV Efficiency (%) HHV Efficiency (%)	1.39 3 75.3 69.7 1.09 0.457 5 2.26 4 75.5 69.8	29.08% 19.93%

Wood Heater Conditioning Data - ASTM E2780/ ASTM E2515

Manufacturer: Hearth & Home

Model: 3100 ACC 2153

Tracking No.: 2153
Project No.: 0061WS066E.REV002

Test Date: 12-Feb-17
Technician: B. Davis

Operation Category: Cat II

Operated for 50 hours at a medium burn rate with fuel moisture between 19 and 25%.

Elapsed Time (hr)	Fuel weight	Flue Gas Temp (° F)
0	11.8	285.0
1	3.1	573.0
2	10.9	401.0
3	2.5	572.0
4	10.8	375.0
5	2.4	553.0
6	10.9	386.0
7	3.2	605.0
8	8.7	418.0
9	3.1	454.0
10	7.7	334.0
11	3.4	430.0
12	1.1 9.7	344.0
13		236.0
14	2.4	525.0
15	1.0	357.0
16	6.9	252.0
17	4.1	383.0
18	1.0	318.0
19	7.7	206.0
20	2.6	413.0
21	1.0	291.0
22	0.8	205.0
23	7.7	185.0
24	3.7	430.0
25	0.9	346.0

Elapsed Time (hr)	Fuel weight	Flue Gas Temp (° F)
26	0.9	208.0
27	6.4	192.0
28	4.1	371.0
29	1.1	310.0
30	8.0	199.0
31	6.7	176.0
32	5.0	377.0
33	1.6	325.0
34	0.9	192.0
35	0.7	166.0
36	5.8	157.0
37	4.6	325.0
38	1.4	321.0
39	5.5	204.0
40	4.9	323.0
41	1.4	314.0
42	5.9	205.0
43	4.4	355.0
44	1.2	318.0
45	4.8	206.0
46	5.2	288.0
47	2.1	315.0
48	6.2	218.0
49	4.3	327.0
50	3.4	279.0

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Run 1

Gas Analyzer Pre-Service and Post-Service Performance Check and Calibration

Client: Hearth & Home

Model: 3100 ACC Project No: 0061WS066E Test Unit Tracking No.: 2153

Date: 2/13/17 Technician: B. Davis

Analyzer Type: CO, CO2 Analyzer I.D. No.: 419

Pretest Leak Check: Pass ☒ Fail ☐ Post Test Leak Check: Pass ☒ Fail ☐

Calibration Data

Note: Record Units of measure when recording Values and Responses (Resp.)

	Zero	Cal	Low	Cal	Mid	Cal	High	Cal
Certified Gas Or NIST Traceable	Cylinder#		Cylinder# EB0088202	Gai	Cylinder# EB0088221	Gai	Cylinder# EB0088205	Gai
	Value	Resp.	Value	Resp.	Value	Resp.	Value	Resp.
Pre Test Calibrations CO ppm	<u>0</u>	0.000	<u>0.21</u>	0.207	<u>1.00</u>	0.998	<u>5.082</u>	<u>5.08</u>
Pre Test Calibrations CO2 %	<u>0</u>	0.00	<u>2.00</u>	<u>2.07</u>	9.99	<u>10.10</u>	<u>15.97</u>	<u>15.96</u>
Pre Test Calibrations O2 %								
Pre Test Verifications NOX ppm								
Post Test Verifications CO ppm	<u>0</u>	<u>-0.002</u>	0.21	0.204	<u>1.00</u>	<u>1.004</u>	<u>5.082</u>	<u>5.07</u>
Post Test Verifications CO2 %	<u>0</u>	0.05	<u>2.00</u>	2.05	9.99	<u>10.06</u>	<u>15.97</u>	<u>15.95</u>
Post Test Verifications O2 %								
Post Test Verifications NOX ppm								
Allowable Drift ± 4% or per test	<u>Pass</u>		<u>Pass</u>	\boxtimes	<u>Pass</u>		<u>Pass</u>	
method requirements	<u>Fail</u>		<u>Fail</u>		<u>Fail</u>		<u>Fail</u>	

Comments and/or routine adjustments: N/A
Equipment was \boxtimes or was not \square in good working order for the duration of the test:
Corrective action taken if equipment is/was out of acceptable perimeters <u>NA</u>
Date: <u>2/16/17</u>
Technician signature: 3

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153

Run: 1

Test Date: 02/13/17

Burn Rate	0.99 kg/hr dry
Average Tunnel Temperature	80 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	13.08 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	8565.8 dscf/hour
Average Delta p	0.040 inches H20
Total Time of Test	290 minutes

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)				
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	56.587 cubic feet 76 degrees Fahrenheit 54.642 dscf	32.757 cubic feet 79 degrees Fahrenheit 31.120 dscf	38.291 cubic feet 80 degrees Fahrenheit 36.083 dscf	8.888 cubic feet 79 degrees Fahrenheit 8.444 dscf				
Total Particulates - m _n	0.1 mg	6.9 mg	8.4 mg	4.3 mg				
Particulate Concentration (dry-standard) - C _r /C _s	0.000002 grams/dscf	0.00022 grams/dscf	0.00023 grams/dscf	0.00051 grams/dscf				
Total Particulate Emissions - E _T	0.08 grams	9.10 grams	9.56 grams	5.82 grams				
Particulate Emission Rate	0.02 grams/hour	1.88 grams/hour	1.98 grams/hour	4.36 grams/hour				
Emissions Factor		1.90 g/kg	2.00 g/kg	1.45 g/kg				
Difference from Average Total Particulate Emissions		0.23 grams	0.23 grams					
		Dual Train Comparison Results Are Acceptable						

	FINAL AVERAGE RESULTS
Complete Test Run	
Total Particulate Emissions - E _T	9.33 grams
Particulate Emission Rate	1.93 grams/hour
Emissions Factor	1.95 grams/kg
First Hour Emissions (Changed @ 80 min)	
Total Particulate Emissions - E _T	5.82 grams
Particulate Emission Rate	4.36 grams/hour
Emissions Factor	1.45 grams/kg

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Train Precision ≤ 7.5%	0.51
Train Precision ±0.5 g/kg	0.10
Negative Probe Weight Eval.	OK
Pro-Rate Variation	NOT ACCEPTABLE
Stove Surface ΔT	OK

Wood Heater Preburn Data - ASTM E2780

Run: 1

Manufacturer: Hearth & Home Model: 3100 ACC

Tracking No.: 2153

Project No.: 0061WS066E.REV002

Test Date: 2/13/2017

Beginning Clock Time: 10:36

Coal Bed
Range 2.5 3.2
(lb): (min) (max)

						Tempera	tures (°F)			
Elapsed Time (min)	Scale (lb)	Stack Draft (in H ₂ O)	FB Top	FB Bottom	FB Back	FB Left	FB Right	Avg. Firebox Surface	Stack	Ambient
0	5.5	-0.03	444	451	464	580	619	511.6	75	69
10	4.7	-0.03	437	465	428	551	598	495.8	74	69
20	4	-0.03	416	456	397	513	563	469	74	69
30	3.4	-0.03	435	439	381	486	545	457.2	75	70
40	2.9	-0.02	397	422	360	466	535	436	76	71
50	2.8	-0.02	309	408	321	434	501	394.6	142	72
60	2.7	-0.02	257	397	277	395	459	357	164	74

Wood Heater Test Data - ASTM E2780 / ASTM E2515

Run: 1 Manufacturer: Model:	Hearth & Home	-
Tracking No.:	2153	Total Sampling Time: 290 min
Project No.:	0061WS066E.REV002	Recording Interval: 10 min
Test Date:	13-Feb-17	
Beginning Clock Time:	11:37	Background Sample Volume: 56.587 cubic feet
Meter Box Y Factor:	1.001 (1)	
Barometric Pressure	Begin Middle	End Average
	28.95 28.95	28.93 28.94 "Hg
OMNI Equipme	ent Numbers:	

PM Control Modules:	371, 372						
Dilution Tunnel MW(dry):	29.00 lb/	lb-mole	Avg. Tunnel Velocity:	13.08	ft/sec.		
Dilution Tunnel MW(wet):	28.78 lb/	lb-mole	Initial Tunnel Flow:	142.1	scfm		
Dilution Tunnel H2O:	2.00 pe	rcent	Average Tunnel Flow:	142.8	scfm		
Dilution Tunnel Static:	-0.520 "H	20	Post-Test Leak Check (1):	0.000	cfm @	6	in. Ho
Tunnel Area:	0.19635 ft2		Post-Test Leak Check (2):	0.000	cfm @	8	in. Họ
Pitot Tube Cp:	0.99	Avera	ge Test Piece Fuel Moisture:	20.74	Dry Basis %		

				Velocity 7	Traverse I	Data				1
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	Center	1
Initial dP	0.034	0.032	0.038	0.034	0.038	0.040	0.040	0.036	0.040	"Н
Temp:	79	79	79	79	79	79	79	79	79	۰F
	V _{strav}	13.07	ft/sec		V _{scent}	13.62	ft/sec	Fp	0.960	-

Technician Signature:	Bull	2.
-----------------------	------	----

						Parti	culate San	npling D	ata						Fuel We	eight (lb)					Tempe	erature Da	ata (°F)					Stack	Gas Data
Elapsed Time (min)	Gas Meter 1 (ft ³)	Gas Meter 2 (ft ³)	Sample Rate 1 (cfm)	Sample Rate 2 (cfm)	Orifice dH 1 ("H ₂ O)	Meter 1 Temp (°F)	Meter 1 Vacuum ("Hg)	Orifice dH 2 ("H ₂ O)	Meter 2 Temp (°F)	Meter 2 Vacuum ("Hg)	Dilution Tunnel (°F)	Dilution Tunnel Center dP	Pro. Rate 1	Pro. Rate 2	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Avg. Stove Surface Temp	Catalyst Exit Temp	Stack	Filter 1	Filter 2	Ambient	Draft ("H ₂ O)	CO ₂ CO (%)
0	0.000	0.000			1.11	65	0.02	0.99	65	-0.8	79	0.040			12.7		251	395	271	387	451	351	N/A	160	75	76	74	-0.007	3.38 0.92
10	1.090	0.778	0.11	80.0	1.02	68	0.05	1.28	68	-1.5	77	0.040	98	60	11.9	-0.8	392	377	226	352	405	350	N/A	316	77	78	73	-0.033	7.85 0.84
20	2.168	2.110	0.11	0.13	1.00	71	0.05	1.11	72	-1.2	79	0.040	97	102	10.7	-1.2	505	357	215	341	374	358	N/A	381	78	80	73	-0.040	10.32 0.36
30	3.245	3.418	0.11	0.13	1.00	74	0.05	1.10	74	-1.2	80	0.040	96	100	9.6	-1.1	540	339	220	348	368	363	N/A	345	79	81	73	-0.039	10.9 0.39
40	4.368	4.731	0.11	0.13	1.08	76	-0.03	1.12	76	-1.2	80	0.040	100	100	8.5	-1.1	551	325	234	365	368	369	N/A	347	80	82	73	-0.039	11.52 0.49
50	5.496	6.050	0.11	0.13	1.07	78	-0.03	1.12	77	-1.2	80	0.040	100	100	7.4	-1.1	534	315	264	399	388	380	N/A	327	80	83	73	-0.037	10.86 0.37
60	6.624	7.378	0.11	0.13	1.09	79	-0.03	1.11	78	-1.2	80	0.040	100	101	6.5	-0.9	494	306	276	417	399	378	N/A	307	80	82	72	-0.034	10.46 0.6
70	7.753	8.710	0.11	0.13	1.09	79	-0.02	1.13	79	-1.2	80	0.040	100	101	5.7	-0.8	471	299	289	429	421	382	N/A	291	80	82	72	-0.032	10.81 0.78
80	8.888	10.045	0.11	0.13	1.08	80	-0.02	1.13	80	-1.2	80	0.040	100	101	4.7	-1	490	293	298	434	439	391	N/A	298	80	82	73	-0.033	11.45 0.49
90	10.017	11.379	0.11	0.13	1.08	80	-0.03	1.14	80	-1.3	82	0.040	100	101	3.9	-0.8	491	289	297	438	453	394	N/A	292	81	83	74	-0.031	10.79 0.46
100	11.148	12.714	0.11	0.13	1.09	81	-0.03	1.14	81	-1.3	82	0.040	100	101	3.3	-0.6	442	287	301	437	453	384	N/A	259	81	83	76	-0.030	9.61 0.51
110	12.286	14.049	0.11	0.13	1.09	82	-0.03	1.12	81	-1.2	82	0.040	100	101	2.8	-0.5	427	287	300	413	454	376	N/A	251	83	83	76	-0.028	8.47 0.72
120	13.416	15.388	0.11	0.13	1.08	82	-0.03	1.13	82	-1.3	81	0.040	100	101	2.4	-0.4	367	287	309	395	461	364	N/A	217	82	82	75	-0.025	7.75 1.02
130	14.552	16.729	0.11	0.13	1.09	83	-0.02	1.13	82	-1.2	81	0.040	100	101	2.2	-0.2	312	290	308	378	452	348	N/A	189	81	82	77	-0.021	6.44 1.16
140	15.689	18.072	0.11	0.13	1.09	82	-0.03	1.15	82	-1.3	81	0.040	100	101	2.0	-0.2	276	294	311	362	436	336	N/A	177	81	81	78	-0.018	6.32 1.07
150	16.825	19.418	0.11	0.13	1.09	82	-0.03	1.14	82	-1.2	80	0.040	100	102	1.9	-0.1	251	297	309	351	425	327	N/A	165	80	81	78	-0.017	5.87 1.18
160	17.965	20.760	0.11	0.13	1.10	82	-0.03	1.14	82	-1.2	80	0.040	100	101	1.8	-0.1	235	300	306	341	414	319	N/A	161	80	80	78	-0.016	5.94 1.37
170	19.102	22.105	0.11	0.13	1.09	81	-0.03	1.14	82	-1.2	79	0.040	100	101	1.6	-0.2	226	301	303	333	406	314	N/A	160	80	80	78	-0.015	5.85 1.51
180	20.241	23.453	0.11	0.13	1.09	81	-0.03	1.13	82	-1.2	79	0.040	100	102	1.5	-0.1	222	301	295	328	400	309	N/A	158	80	80	78	-0.015	5.93 1.75
190	21.383	24.801	0.11	0.13	1.08	81	-0.02	1.15	82	-1.2	79	0.040	101	102	1.3	-0.2	221	301	281	324	396	305	N/A	159	79	80	78	-0.015	6.47 1.42
200	22.517	26.148	0.11	0.13	1.10	81	-0.03	1.15	82	-1.2	79	0.040	100	101	1.2	-0.1	218	301	274	320	392	301	N/A	154	79	80	78	-0.015	5.9 1.57
210	23.656	27.493	0.11	0.13	1.09	82	-0.02	1.15	82	-1.2	79	0.040	100	101	1.1	-0.1	215	301	278	316	387	299	N/A	157	79	80	78	-0.015	5.87 1.73
220	24.795	28.841	0.11	0.13	1.09	81	-0.03	1.15	82	-1.3	79	0.040	100	102	0.9	-0.2	214	301	282	313	385	299	N/A	157	79	80	78	-0.015	5.8 1.71
230	25.929	30.192	0.11	0.14	1.09	81	-0.03	1.14	82	-1.2	79	0.040	100	102	0.8	-0.1	215	302	284	312	384	299	N/A	160	79	80	78	-0.015	6.02 1.71
240	27.071	31.542	0.11	0.14	1.09	81	-0.03	1.14	82	-1.2	79	0.040	101	102	0.6	-0.2	215	303	284	314	383	300	N/A	162	79	80	78	-0.016	6.01 1.56
250	28.206	32.891	0.11	0.13	1.09	82	-0.02	1.15	82	-1.3	79	0.040	100	102	0.5	-0.1	216	304	282	317	380	300	N/A	160	79	80	78	-0.015	5.34 1.85
260	29.344	34.238	0.11	0.13	1.08	82	-0.03	1.15	82	-1.2	79	0.040	100	101	0.4	-0.1	213	304	271	316	374	296	N/A	160	79	80	79	-0.016	4.94 1.82
270	30.482	35.587	0.11	0.13	1.09	82	-0.03	1.15	82	-1.3	79	0.040	100	102	0.3	-0.1	208	305	261	311	366	290	N/A	154	79	80	79	-0.015	4.54 1.89
280	31.616	36.939	0.11	0.14	1.10	82	-0.03	1.15	82	-1.2	79	0.040	100	102	0.1	-0.2	203	304	252	304	356	284	N/A	150	79	80	78	-0.015	4.51 1.82
290	32.757	38.291	0.11	0.14	1.09	82	-0.03	1.15	82	-1.2	79	0.040	100	102	0.0	-0.1	199	302	242	296	348	277	N/A	151	79	80	78	-0.014	4.38 1.88
Avg/Tot	32.757	38.291	0.11	0.13	1.08	79		1.14	80		80	0.040	100	100		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		73.6			<i>X////////////////////////////////////</i>	81	76	-0.023	

Wood Heater Lab Data - ASTM E2780 / ASTM E2515

Manufacturer:	Hearth & Home	Equipment I	Numbers:		
Model:	3100 ACC				
Tracking No.:	2153				
Project No.:	0061WS066E.REV002				
Run #:	1				
Date:	2/13/17				

TRAIN 1 (First Hour emissions)

Sample Component	Reagent	Filter, Probe		Weights	3
		or Dish #	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D42	124.7	120.4	4.3
C. Rear filter catch	Filter				0.0
D. Probe catch*	Probe				0.0
E. Filter seals catch*	Seals				0.0

Sub-Total	Total Particulate, mg:	4.3

TRAIN 1 (Post First Hour Change-out)

Sample Component	Reagent	Filter, Probe		Weights	;
		or Dish#	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D46	123.5	122.6	0.9
C. Rear filter catch	Filter	D43	122.8	122.4	0.4
D. Probe catch*	Probe	1	122781.0	122779.9	1.1
E. Filter seals catch*	Seals	R435	3381.4	3381.2	0.2

Sub-Total	Total Particulate, mg:	2.6
	· ·	

Train 1 Aggregate	Total Particulate, mg:	6.9
mann i riggi ogato	Total Farticulate, 111g.	5.

TRAIN 2

Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D44	130.9	123.7	7.2
B. Rear filter catch	Filter	D45	120.9	120.5	0.4
C. Probe catch*	Probe	4	114860.4	114859.9	0.5
D. Filter seals catch*	Seals	R436	3306.3	3306.0	0.3

Total Particulate, mg:	8.4
------------------------	-----

AMBIENT

Sample Component	Reagent	Filter # or	Weights		
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch*	Filter	D41	123.3	123.2	0.1

Total Particulate, mg:	0.1
------------------------	-----

^{*}Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be part of the seal weight.

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Wood Heater Test Fuel Data - ASTM E2780

Manufacturer: Hearth & Home Model: 3100 ACC
Tracking No.: 2153

Project No.: 0061WS066E.REV002 Test Date: 2/13/2017

Run No.: 1

Firebox Volume (ft ³):	1.89
Fuel Piece Length (in):	14
2x4 Crib Weight (lb):	5.5
4x4 Crib Weight (lb):	7.2

Total Fuel Weight (Dry Basis, lb):	10.5	
Fuel Density (lb/ft ³ , Dry Basis):	27.86	ОК
Loading Density (lb/ft ³ , Wet Basis):	6.72	ОК
2x4 Percentage:	43%	ОК

Coal Bed Range (20-25%): 2.54 - 3.175

Test Fuel Piece	Weight (lb)	Size	Read	dings (Dry Basi	is %)	Dry Weight (lb)
1	1.5	2"x 4"	19.5	19.3	19.3	1.26
2	1.4	2"x 4"	21.0	20.1	20.2	1.16
3	1.4	2"x 4"	19.5	21.0	20.9	1.16
4	3.4	4"x 4"	22.6	22.8	22.7	2.77
5	3.3	4"x 4"	20.8	20.2	21.2	2.73

Spacer Readings (Dry Basis %)			
9.6	17.3		
13.7	15.3		
6.8	14.3		
9.5			
18.1			
20.5			
19.7			
13.2			
18.7		· <u></u>	
19.5			
23.8			
22.1			
17.8			

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: /

Model: 3100 ACC

Tracking Number: 2153

Tracking Number: 2153 Date: 2//3//7
OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A.

Test Crew: B. Davis 131, 592

Wood Heater Run Notes

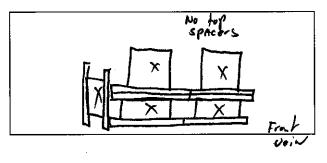
Air Control Settings

Primary:

0. 692'

Secondary:

Tertiary/Pilot:


Fan:

Preburn Notes

Time	Notes
50	hereled couls

Test Notes

Sketch test fuel configuration:

Start up procedures & Timeline:

Bypass: Fuel loaded by:

Door closed at:

Primary air:

Notes:

Time	Notes
ø	After loading fuel found DGM to halizer on Box B was not sending signal to Data- Logger although pump was pulling sample. Removed cover from face of sample box and verified connections. Signal started working but some of the sample pulled was not shown in total cubic feet.
80	Changed train A Front hilter

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 1

Model: 3100 ACC

Test Crew: B. Davis <u>131, 592</u>

Wood Heater Fuel Data

		Pre-	·Burn Fuel		
Calibration:			Actual Readi Actual Readi		
Piece:	Length:	Reading:	Piece:	Length:	Reading:
1 2	&_in &_in	<u>20.1</u> 18.9	7 8	in	
3	in	19.4	9	in	
4 5	in in		10 11	in in	
6	in		12	in	
Total Pre-Bur	n Fuel Weight: _	2.6	Pre-Bur	n Fuel Average N	Moisture: <u>/%. ५</u>
Time (clock):	10:15	Room Te	mperature (F	(): 67	Initials:
		Te	est Fuel		
Load Weight Fuel Type & A	mount: 2 x 4	<u> 3 </u>	Total	4 x 4: <u>2</u>	Veight (lb):
Load Weight Fuel Type & A Weight	Range (lb): $\frac{1}{2}$	1.9 -13.23- 14.5 :3 _5.5 We	Total	Wet Fuel Load V	Veight (lb):
Load Weight Fuel Type & A Weight	Range (lb): 1	1.9 -13.23- 14.5 :3 _5.5 We	Total	Wet Fuel Load V 4 x 4: <u>2</u> acers): <u>7, 2</u>	Veight (lb): <u>/2. 7</u> -
Load Weight Fuel Type & A Weight Piece: W	Range (lb): 1. Imount: 2 x 4 (with spacers): (eight (lbs):	1.9 -13.23- 14.5 :3 5.5 We Moi:	Total eight (with sp sture Readin	4 x 4: 2 acers): 7,2 ngs (%DB):	Veight (lb):
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1. Imount: 2 x 4 (with spacers): eight (lbs):	1.9 -13.23- 14.5 :3 _5.5 We 	Total eight (with sp sture Readin	4 x 4: 2 acers): 7,2 ngs (%DB): - (7,3 - 20,2	Veight (lb):
Load Weight Fuel Type & A Weight Piece: W 1 2 3	Range (lb): 1. Immount: 2 x 4 (with spacers): Peight (lbs): 1.7	1.9 -13.23- 14.5 :3 5.5 We 	Total eight (with sp sture Readii	4 x 4: 2 acers): 7,2 ngs (%DB): 19,3 20,2 20,9	Veight (lb):
Load Weight Fuel Type & A Weight Piece: W 1 2 3	Range (lb): 1.4 (with spacers): (eight (lbs): 1.4 1.4	19 -13.23- 145 3 5.5 We Mois	Total eight (with sp sture Readir 19.3 20.1 21.0	4 x 4: 2 acers): 7,2 ngs (%DB): 19.3 20.2 20.9 22.7	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1 2 3 4	Range (lb): 1.4 (with spacers): (eight (lbs): 1.4 1.4 3.4	19-13.23- 145 3 5.5 We Mois 	Total eight (with sp sture Readin 19.3 20.1 21.0 22.8	4 x 4: 2 acers): 7,2 ngs (%DB): 19.3 20.2 20.9 22.7	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): (eight (lbs): 1.4 1.4 3.4	19-13.23- 145 3 5.5 We Mois 	Total eight (with sp sture Readin 19.3 20.1 21.0 22.8	4 x 4: 2 acers): 7,2 ngs (%DB): 19.3 20.2 20.9 22.7	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): (eight (lbs): 1.4 1.4 3.4	19-13.23- 145 3 5.5 We Mois 	Total eight (with sp sture Readin 19.3 20.1 21.0 22.8	4 x 4: 2 acers): 7,2 ngs (%DB): 19.3 20.2 20.9 22.7	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): feight (lbs): f. 4 f. 4	19-13.23- 145 3 5.5 We Mois 	Total sight (with spotsture Reading 19.3 20.7 21.8 20.2	4 x 4: 2 acers): 7,2 ngs (%DB): 19,3 20,2 20,9 21,7 21,2	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): eight (lbs): 1.4 1.4 3.4 3.3	19 - 13.23 - 14.5 3 5.5 We Mois 19.5 21.0 19.5 22.6 20.8 Spacer Moistu 18.1	Total sight (with specific records) and the specific records and the specific records are Readings records are Readings records are record	4 x 4: 2 acers): 7.2 ngs (%DB): (9.3 20.2 20.9 21.7 21.2	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): feight (lbs): 1.4 1.4 3.4 3.3	19 - 13.23 - 14.5 3 5.5 We Mois 19.5 21.0 19.5 22.6 20.8 Spacer Moistu 18.1 18.3	re Readings	4 x 4: 2 acers): 7.2 ngs (%DB): (9.3 20.2 20.9 21.7 21.2	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1	Range (lb): 1.4 (with spacers): feight (lbs): 1.4 1.4 3.4 3.3	19 - 13.23 - 14.5 3 5.5 We Mois 19.5 21.0 19.5 22.6 20.8 Spacer Moistu 18.1	re Readings	4 x 4: 2 acers): 7.2 ngs (%DB): (9.3 20.2 20.9 21.7 21.2	Fuel Type:

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: /

Model: 3100 ACC Test Crew: B. Davis Tracking Number: <u>2153</u> Date: <u>2//3//7</u>

OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A, </u>

131, 592

Wood Heater Supplemental Data

Start Time: 11:37

Booth #: **£**/

Stop Time:__16:27

Stack Gas Leak Check:

Sample Train Leak Check:

Initial: 900 d Final: 900 d

A: 0.0 @ 6 "Hg B: <u>o.o @ & "</u>Hg

Calibrations: Span Gas

CO₂: 9.99 CO: 100

	Pre Test		Post	Test
	Zero	Span	Zero	Span
Time	ø	Ø	295	295
CO ₂	0.00	7.99	0.02	9.90
co	- 0.001	1.00	- 0.013	.987

Air Velocity (ft/min):

Initial: 450

Final: 450

Scale Audit (lbs):

Initial: 10.0

Final:__*10.0*

Pitot Tube Leak Test: Initial: ________

Final: good

Stack Diameter (in): 6 "

Induced Draft: __________

% Smoke Capture: 100 %

Flue Pipe Cleaned Prior to First Test in Series:

Date: 2/12/17-

Initials:

	Initial	Middle	Ending
P _b (in/Hg)	28.95	28.95	28,93
RH (%)	MA	MA	N/A
Ambient (°F)	74	78	78

Background Filter Volume: _56.587

Tun	nel Travers	9
Microtector Reading	dP (in H₂O)	T(°F)
	0.034	79
2	0.032	79
3	0.038	79
4	0.034	79
1	0.038	79
2	0.040	79
3	0.040	79
7	0.036	79
Center:		
	.040	79

Tunnel Static Pre	ssure (in H ₂ 0):
Beginning of Test	End of Test
520	520

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 1

Model: 3100 ACC

Test Crew: B. Davis

<u>131, 592</u>

ASTM E2515 Lab Sheet

Date/Time: Dat	%: R/H %: p: Temp: Audit: 200 mg Audit: Idit: 2 g Audit: Audit 100 g Audit
Date/Time in Dessicator: Date/Time in Dessi	p: Temp: Audit: 200 mg Audit: dit: 2 g Audit: Audit 100 g Audit
Date/Time in Dessicator: Date/Time in Dessi	p: Temp: Audit: 200 mg Audit: dit: 2 g Audit: Audit 100 g Audit
Temp: Temp: Temp: Temp: Temp: Temp: 3. y 69.6 200 mg Audit:	Audit. 200 mg Audit. Idit. 2 g Audit. Audit 100 g Audit
100 g Audit: 100	Audit. 200 mg Audit. Idit. 2 g Audit. Audit 100 g Audit
Date/Time in Dessicator: 200 mg Audit: 2	idit. 2 g Audit: Audit 100 g Audit
Date/Time in Dessicator: 200 mg Audit: 2	idit. 2 g Audit: Audit 100 g Audit
2 g Audit 1.98999 1.98999 1.989	Audit 100 g Audit
1.9999 1	Audit 100 g Audit
100 g Audit	
100 g Audit	
Initials: Ini	ls: Initials:
Initials: Ini	ls: <u>Initials:</u>
Train Element ID# Tare (mg) Weight (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg)	
Train Element ID# Tare (mg) Weight (mg) Weight (mg) Weight (mg) (mg)	
Front Front	ht Weight
Front	
	,, \ <u>s</u> ,
Rear	in the second second
A Filter 1 1 2 2 2 2 2 2 2 2	197
CHISI Green Control Co	
The second was a second with the second with the second was a second with the	
O-Ring N/A	
	- 11
Front Pilter Dy6 /22.6 /23.6 /23.5 /23.5	
	<u></u>
A Rear (Remail Filter Dy3 /22,4 /22.9 /22.8 /22.8	
nder) 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Probe 1 1227799 1227813 122781.0 122781.0	
O-Ring 338/-2	
Set R 435 338/6 3381.5 3381.4	
Front	
Filter D44 /23.7 131.1 130.9 130.9	<u> Nation</u>
Rear Out	
B Filter 1245 1205 121.0 1209 120.9	
Probe 4 114 859.9 114860.5 114860.3 114860.4	\$4.3
O-Ring	
Set 2 436 3306.0 3306.3 3306.3 33 46.3	That is
BG Filter D41 123.2 123.2 123.3 123.3	
[[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[

Technician Signature:

Date: 3/3//7

	VERSION:	2.2	12/14/2009					
N	Manufacturer:	Hearth & Home		Applia	nce Type:	Non-Cat	(Cat, Non	-Cat, Pellet)
	Model:	3100 ACC						
	Date:	2/13/2017		Te	emp. Units	F	(F or C)	Defa
	Run:				ight Units	lb	(kg or lb)	
		0061WS066E.R2					()	HHV (kJ/kg
т	est Duration:							%
	out Category:				Fuel	Data		% %
Outp	out Gategory.	_			i dei	Data D. Fir		%
	Wasd	Maiatura (0/at).	47.40		11111/		le: /le m	
		Moisture (% wet):			HHV	,	kj/kg	%As
		d Weight (lb wet):	12.70		%C	48.73		
		n Rate (dry kg/h):			%H	6.87		
	Total Partic	culate Emissions:	N/A	g	%O	43.9		
					%ASH	0.5		
		Averages	1.17	7.34	#DIV/0!	217.50	76.13	
							o. (ºF)	
	Elapsed	Fuel Weight	Flue G	as Composit	ion (%)	Flue	Room	
7	Time (min)	Remaining (lb)	co	CO2	O_2	Gas	Temp	
	0	12.70	0.92	3.38		160.0	74.0	
	10	11.90				316.0		
	20	10.70				381.0		
	30	9.60		10.90		345.0		
	40	8.50		11.52		347.0		
	50	7.40	0.37	10.86		327.0	73.0	
	60	6.50	0.60	10.46		307.0	72.0	
	70	5.70	0.78	10.81		291.0		
	80	4.70	0.49	11.45		298.0		
	90	3.90	0.46	10.79		292.0		
	100	3.30	0.51	9.61		259.0		
	110	2.80	0.72	8.47		251.0		
	120	2.40		7.75		217.0		
	130	2.20				189.0		
	140	2.00	1.07	6.32		177.0		
	150	1.90	1.18	5.87		165.0		
	160	1.80	1.37	5.94		161.0		
	170	1.60	1.51	5.85		160.0		
	180	1.50	1.75	5.93		158.0		
	190	1.30	1.42	6.47		159.0		
	200	1.20	1.57	5.90		154.0		
	210	1.10	1.73	5.87		157.0		
	220	0.90	1.71	5.80		157.0		
	230	0.80	1.71	6.02		160.0		
	240	0.60	1.56	6.01		162.0		
	250	0.50	1.85	5.34		160.0		
	260	0.40	1.82	4.94		160.0		
	270	0.30	1.89	4.54		154.0	79.0	

280

290

0.10

0.00

1.82

1.88

4.51

4.38

Default Fuel Values							
	D. Fir Oak						
HHV (kJ/kg)	19,810	19,887					
%C	48.73	50					
%Н	6.87	6.6					
%O	43.9	42.9					
%Ash	0.5	0.5					

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

150.0

151.0

78.0

OMNI-Test Laboratories

Manufacturer:	3100 ACC 02/13/17 1 0061WS066E.R2 290 2		Technic	ians:	
	HHV Basis	LHV Basis]		
Overall Efficiency	75.2%	81.3%			
Combustion Efficiency	93.3%	93.3%			
Heat Transfer Efficiency	81%	87.1%			
			<u>-</u>		
Output Rate (kJ/h)	14,707	13,951	(Btu/h)		
Burn Rate (kg/h)	0.99	2.18	(lb/h)		
Input (kJ/h)	19,560	18,555	(Btu/h)		
Test Load Weight (dry kg)	4.77	10.52	dry lb		
MC wet (%)	17.18				
MC dry (%)	20.74				
Particulate (g)	N/A				
CO (g)	452				
Test Duration (h)	4.83				
			1		
Emissions	Particulate	СО			
g/MJ Output	#VALUE!	6.36			
g/kg Dry Fuel	#VALUE!	94.71			
g/h	#VALUE!	93.51			
lb/MM Btu Output	#VALUE!	14.78			

14.31

VERSION: 2.2 12/14/2009

Air/Fuel Ratio (A/F)

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Run 2

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153 Run: 2

Test Date: 02/14/17

Burn Rate	1.39 kg/hr dry
Average Tunnel Temperature Average Gas Velocity in Dilution Tunnel - vs	84 degrees Fahrenheit 15.13 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	9770.3 dscf/hour
Average Delta p Total Time of Test	0.053 inches H20 220 minutes

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)	
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	42.356 cubic feet 78 degrees Fahrenheit 40.501 dscf	29.754 cubic feet 80 degrees Fahrenheit 28.095 dscf	29.750 cubic feet 80 degrees Fahrenheit 27.847 dscf	7.996 cubic feet 80 degrees Fahrenheit 7.550 dscf	
Total Particulates - m _n	0.2 mg	2.9 mg	3.6 mg	2.4 mg	
Particulate Concentration (dry-standard) - C _r /C _s	0.000005 grams/dscf	0.00010 grams/dscf	0.00013 grams/dscf	0.00032 grams/dscf	
Total Particulate Emissions - E _T	0.18 grams	3.52 grams	4.45 grams	3.11 grams	
Particulate Emission Rate	0.05 grams/hour	0.96 grams/hour	1.21 grams/hour	3.11 grams/hour	
Emissions Factor		0.69 g/kg	0.87 g/kg	0.95 g/kg	
Difference from Average Total Particulate Emissions		0.47 grams	0.47 grams		
	Dual Train Comparison Results Are Acceptable				

FINAL AVERAGE RESULTS

3.99 grams
3.99 grams
1.09 grams/hour
0.78 grams/kg
3.11 grams
3.11 grams/hour
0.95 grams/kg

OLIALITY CHECKS

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Train Precision ≤ 7.5%	3.19
Train Precision ±0.5 g/kg	0.18
Negative Probe Weight Eval.	OK
Pro-Rate Variation	OK
Stove Surface ΔT	OK

Wood Heater Preburn Data - ASTM E2780

Run: 2

Manufacturer: Hearth & Home
Model: 3100 ACC

Tracking No.: 2153

Project No.: 0061WS066E.REV002

Test Date: 2/14/2017

Beginning Clock Time: 9:54

Coal Bed
Range 2.7 3.3
(lb): (min) (max)

_			Temperatures (°F)							
Elapsed Time (min)	Scale (lb)	Stack Draft (in H ₂ O)	FB Тор	FB Bottom	FB Back	FB Left	FB Right	Avg. Firebox Surface	Stack	Ambient
0	6.1	-0.04	617	442	535	627	668	577.8	388	68
10	5.2	-0.04	547	455	476	598	636	542.4	326	68
20	4.4	-0.04	512	445	435	555	596	508.6	357	68
30	3.7	-0.03	498	430	410	530	572	488	323	69
40	3.4	-0.02	372	416	365	494	538	437	247	70
50	3.3	-0.02	309	406	327	457	506	401	229	70
60	3.1	-0.02	271	399	288	420	472	370	200	69

Wood Heater Test Data - ASTM E2780 / ASTM E2515

Run: 2		
Manufacturer:	Hearth & Home	_
Model:	3100 ACC	_
Tracking No.:	2153	Total Sampling Time: 220 min
Project No.:	0061WS066E.REV002	Recording Interval: 10 min
Test Date:	14-Feb-17	<u> </u>
Beginning Clock Time:	10:53	Background Sample Volume: 42.356 cubic feet
Meter Box Y Factor:	1.001 (1)	<u>0.993</u> (2) <u>1.014</u> (Amb)
Barometric Pressure:	Begin Middle	End_Average
	28.82 28.78	28.73 28.78 "Hg
OMNI Equipme	ent Numbers:	

PM Control Modules:	371, 372						
Dilution Tunnel MW(dry):	29.00	lb/lb-mole	Avg. Tunnel Velocity:	15.13	ft/sec.		
Dilution Tunnel MW(wet):	28.78	lb/lb-mole	Initial Tunnel Flow:	163.1	scfm		
Dilution Tunnel H2O:	2.00	percent	Average Tunnel Flow:	162.8	scfm		
Dilution Tunnel Static:	-0.650	"H2O	Post-Test Leak Check (1):	0.000	cfm @	8	in. H
Tunnel Area:	0.19635	ft2	Post-Test Leak Check (2):	0.000	cfm @	6	in. H
Pitot Tube Cp:	0.99	Avera	ge Test Piece Fuel Moisture:	19.88	Dry Basis %		

										_
				Velocity 7	Traverse I	Data				1
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	Center	1
Initial dP	0.046	0.050	0.050	0.038	0.054	0.056	0.052	0.040	0.053	"H2
Temp:	76	76	76	76	76	76	76	76	76	۰F
	V_{strav}	15.01	ft/sec		V _{scent}	15.68	ft/sec	Fp	0.958	_

Technician Signature:

						Partio	culate San	npling D	ata						Fuel We	eight (lb)					Tempe	erature Da	ata (°F)					Stack	Gas D	ata
Elapsed Time (min)	Gas Meter 1 (ft ³)	Gas Meter 2 (ft ³)	Sample Rate 1 (cfm)	Sample Rate 2 (cfm)	Orifice dH 1 ("H ₂ O)	Meter 1 Temp (°F)	Meter 1 Vacuum ("Hg)	Orifice dH 2 ("H ₂ O)	Meter 2 Temp (°F)	Meter 2 Vacuum ("Hg)	Dilution Tunnel (°F)	Dilution Tunnel Center dP	Pro. Rate 1	Pro. Rate 2	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Avg. Stove Surface Temp	Catalyst Exit Temp	Stack	Filter 1	Filter 2	Ambient	Draft ("H ₂ O)		CO (%)
0	0.000	0.000			1.42	66	-0.35	1.10	66	-1	76	0.053			13.3		267	397	283	415	466	366	N/A	198	75	75	70	-0.021	2.56	0.47
10	1.326	1.340	0.13	0.13	1.50	68	-0.44	1.14	68	-1.3	78	0.053	100	101	12.3	-1	462	383	237	374	418	375	N/A	444	77	78	72	-0.041		0.29
20	2.665	2.676	0.13	0.13	1.52	71	-0.47	1.14	71	-1.3	81	0.053	100	100	10.7	-1.6	597	363	235	365	406	393	N/A	500	80	82	73	-0.046	7.92	0.15
30	3.993	3.986	0.13	0.13	1.50	74	-0.48	1.17	74	-1.3	83	0.053	99	98	9.0	-1.7	632	344	260	401	416	411	N/A	489	82	85	73	-0.047	10.04	0.49
40	5.330	5.334	0.13	0.13	1.50	77	-0.48	1.15	76	-1.4	85	0.053	100	101	7.5	-1.5	676	328	287	457	438	437	N/A	492	84	86	73	-0.047	9.59	0.11
50	6.658	6.653	0.13	0.13	1.49	78	-0.48	1.15	78	-1.4	85	0.053	99	98	6.0	-1.5	661	315	316	497	463	450	N/A	476	85	87	73	-0.046	9.37	0.24
60	7.996	8.007	0.13	0.14	1.54	79	-0.53	1.16	79	-1.4	86	0.053	99	101	4.7	-1.3	648	307	345	525	488	463	N/A	464	85	88	73	-0.044	8.58	0.38
70	9.352	9.360	0.14	0.14	1.53	80	-0.47	1.15	80	-1.4	86	0.053	100	100	3.6	-1.1	602	302	370	538	506	464	N/A	417	86	88	74	-0.042	7.78	0.09
80	10.708	10.713	0.14	0.14	1.53	81	-0.47	1.15	81	-1.4	87	0.053	100	100	2.8	-0.8	525	302	398	535	515	455	N/A	361	86	88	77	-0.036	5.37	0.19
90	12.062	12.067	0.14	0.14	1.53	82	-0.46	1.15	82	-1.4	86	0.053	100	100	2.4	-0.4	444	306	395	522	514	436	N/A	301	86	87	79	-0.033	4.51	0.3
100	13.423	13.426	0.14	0.14	1.54	82	-0.46	1.16	82	-1.4	86	0.053	100	100	2.1	-0.3	376	312	378	493	503	412	N/A	262	86	87	80	-0.028	3.93	0.44
110	14.778	14.786	0.14	0.14	1.54	83	-0.46	1.14	83	-1.4	85	0.053	100	100	1.8	-0.3	336	318	363	471	483	394	N/A	245	85	86	81	-0.026	4.18	0.51
120	16.141	16.144	0.14	0.14	1.54	83	-0.46	1.15	83	-1.4	85	0.053	100	100	1.7	-0.1	312	324	353	456	465	382	N/A	236	85	86	82	-0.025	4.21	0.63
130	17.497	17.502	0.14	0.14	1.54	83	-0.45	1.16	83	-1.3	85	0.053	100	100	1.4	-0.3	297	328	342	444	451	372	N/A	231	85	86	82	-0.025	4.23	0.67
140	18.862	18.863	0.14	0.14	1.54	83	-0.46	1.14	83	-1.3	85	0.053	101	100	1.2	-0.2	285	330	333	436	439	365	N/A	223	85	86	82	-0.024	4.23	0.7
150	20.219	20.224	0.14	0.14	1.53	84	-0.46	1.14	83	-1.4	85	0.053	100	100	1.1	-0.1	275	332	327	427	430	358	N/A	217	84	85	82	-0.023	3.93	0.69
160	21.584	21.587	0.14	0.14	1.53	84	-0.46	1.15	84	-1.4	84	0.053	100	100	0.9	-0.2	267	332	323	420	422	353	N/A	213	84	85	83	-0.023	4.16	0.77
170	22.941	22.946	0.14	0.14	1.53	84	-0.46	1.16	84	-1.4	84	0.053	100	100	0.7	-0.2	263	332	317	414	418	349	N/A	211	84	85	82	-0.022	4.13	0.75
180	24.307	24.306	0.14	0.14	1.53	84	-0.46	1.14	84	-1.4	84	0.053	100	100	0.5	-0.2	256	332	306	407	415	343	N/A	204	84	85	83	-0.021	3.55	0.67
190	25.663	25.667	0.14	0.14	1.53	84	-0.46	1.14	84	-1.4	84	0.053	100	100	0.4	-0.1	246	331	286	387	408	332	N/A	197	84	85	83	-0.021	3.43	0.69
200	27.029	27.025	0.14	0.14	1.53	85	-0.46	1.15	85	-1.4	84	0.053	100	100	0.2	-0.2	239	328	276	370	402	323	N/A	195	84	85	83	-0.020	3.64	0.7
210	28.387	28.389	0.14	0.14	1.53	85	-0.46	1.15	85	-1.4	84	0.053	100	100	0.1	-0.1	235	326	267	357	399	317	N/A	191	84	85	83	-0.020	3.41	0.7
220	29.754	29.750	0.14	0.14	1.53	85	-0.46	1.16	84	-1.4	82	0.053	100	100	0.0	-0.1	230	323	256	344	395	310	N/A	191	84	84	78	-0.021	3.57	0.78
Avg/Tot	29.754	29.750	0.14	0.14	1.52	80		1.15	80		84	0.053	100	100								56.0				85	78	-0.031		

Wood Heater Lab Data - ASTM E2780 / ASTM E2515

Manufacturer:	Hearth & Home	Equipment I	Numbers:		
Model:	3100 ACC				
Tracking No.:	2153				
Project No.:	0061WS066E.REV002				
Run #:	2				
Date:	2/14/17				

TRAIN 1 (First Hour emissions)

Sample Component	Reagent	Filter, Probe		Weights	}
		or Dish#	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D48	123.6	121.2	2.4
C. Rear filter catch	Filter				0.0
D. Probe catch*	Probe				0.0
E. Filter seals catch*	Seals				0.0

Sub-Total	Total Particulate, mg:	2.4

TRAIN 1 (Post First Hour Change-out)

Sample Component	Reagent	Filter, Probe		Weights	
		or Dish #	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D49	122.9	122.7	0.2
C. Rear filter catch	Filter	D50	124.1	124.0	0.1
D. Probe catch*	Probe	OES4	114145.5	114145.3	0.2
E. Filter seals catch*	Seals	R437	3415.6	3415.9	0.0

Sub-Total	Total Particulate, mg:	0.5

Train 1 Aggregate	Total Particulate, mg:	2.9
main i Aggiogato	Total Latticulate, mg.	2.5

TRAIN 2

Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D51	123.0	120.8	2.2
B. Rear filter catch	Filter	D52	122.4	122.4	0.0
C. Probe catch*	Probe	8	115594.4	115593.3	1.1
D. Filter seals catch*	Seals	R438	3402.9	3402.6	0.3

Total Particulate, mg:	3.6

AMBIENT

Sample Component	Reagent	Filter # or		Weights	
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch*	Filter	D47	123.4	123.2	0.2

Total Particulate, mg:	0.2
------------------------	-----

^{*}Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be part of the seal weight.

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Wood Heater Test Fuel Data - ASTM E2780

Manufacturer: Hearth & Home Model: 3100 ACC
Tracking No.: 2153

Project No.: 0061WS066E.REV002 Test Date: 2/14/2017

Run No.: 2

1.89
14
6.1
7.2

Total Fuel Weight (Dry Basis, lb):	11.2	
Fuel Density (lb/ft ³ , Dry Basis):	29.69	ОК
Loading Density (lb/ft ³ , Wet Basis):	7.04	ОК
2x4 Percentage:	46%	ОК

Coal Bed Range (20-25%): 2.66 - 3.325

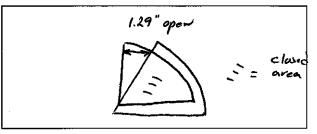
Test Fuel Piece	Weight (lb)	Size	Size Readings (Dry Basis %)			Dry Weight (lb)
1	1.6	2"x 4"	19.2	19.9	19.7	1.34
2	1.7	2"x 4"	19.5	19.8	19.3	1.42
3	1.5	2"x 4"	21.0	20.9	20.5	1.24
4	3.4	4"x 4"	19.1	19.3	19.2	2.85
5	3.4	4"x 4"	20.6	19.3	20.9	2.83

Spacer Readings (Dry Basis %)					
8.7	7.2				
7.4	6.9				
6.8	7.2				
7.2					
7.2					
6.6					
16.6					
6.9					
7.7					
7.9					
6.5					
21.9					
6.8					

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 2

Model: 3100 ACC


_Tracking Number: <u>2153</u> Date: <u>2/14/17</u>
OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A, </u>

Test Crew: B. Davis 131, 592

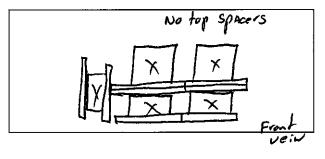
Wood Heater Run Notes

Air Control Settings

Primary:

Secondary:

Tertiary/Pilot:


Fan:

Preburn Notes

Time	Notes
50	Leveled coal bed.

Test Notes

Sketch test fuel configuration:

Start up procedures & Timeline:

Bypass:

Fuel loaded by: ___*i:oo*_

Primary air:

fully open for 5 min then Set to test setting.

Notes:

Time	Notes
60	changed filter in train A.

ASTM E2780 Wood Heater Run Sheets

 Client: Hearth & Home
 Project Number: 0061WS066E.REV002
 Run Number: 2

 Model: 3100 ACC
 Tracking Number: 2153
 Date: 2/14/7

 Test Crew: B. Davis
 OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,

131, 592

Wood Heater Fuel Data

alibration:	Cal Value	(4) = 490/	Natural Danelin	12	
alibration:			Actual Readin Actual Readin		
Piece:	Length:	Reading:	Piece: 7	Length:	Reading:
1 2	<i>&</i> in <i>&</i> in	18.7	8	in	
3 4	<u>&</u> in in	<u> 19. 4</u>	9 10	in in	
5	in		11	in	
6	in		12	in	
Total Pre-Burr	n Fuel Weight: _	2.4	Pre-Burr	n Fuel Average N	Moisture: 19.03
Time (clock): _	9:30	Room Te	mperature (F)	: 65	Initials: BR
			4 F 1		
Fireboy Volum	ne (ff3):		est Fuel	Fuel Diece Lend	ath (in):
Firebox Volur Load Weight I		1.89	Test	Fuel Piece Leng Wet Fuel Load V	gth (in): // / / / / / / / / / / / / / / / / /
	ne (ft³): Range (lb): <u>//</u>	1.89	Test	Fuel Piece Leng Wet Fuel Load V	oth (in): // // // // // // // // // // // // //
Load Weight I		1.89 1.9-13.23-145	Test	Fuel Piece Leng Wet Fuel Load V 4 x 4: 2	Veight (lb):
Load Weight Fuel Type & A	Range (lb): <u>//</u> mount: 2 x 4:	1.89 1.9-13.23-145 _3_	Test Total	Wet Fuel Load V	Veight (lb): <u>/3, 3</u>
Load Weight Fuel Type & A Weight	Range (lb): <u>II</u> mount: 2 x 4: (with spacers):	1.89 1.9-13.23-14.5 3 6.1	Test Total eight (with spa	Wet Fuel Load V 4 x 4: <u>2</u> acers): 7,2	Veight (lb): <u>/3, 3</u> - -
Load Weight Fuel Type & A Weight	Range (lb):	1,89 19-13,23-145 3 6.1 We	Test Total eight (with spa sture Readin	Wet Fuel Load V 4 x 4: <u>2</u> acers): <u>7,2</u> gs (%DB):	Veight (lb):
Load Weight Fuel Type & A Weight Piece: W	Range (lb): <u>II</u> mount: 2 x 4: (with spacers):	1.89 1.9-13.23-14.5 3 6.1	Test Total eight (with spa	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB): _/9.7	Veight (lb):
Load Weight Fuel Type & A Weight Piece: W 1 2	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Moi:	Test Total eight (with spa sture Readin	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Veight (lb): <u>/3.3</u> - - - Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1 2 3	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Moi:	Test Total eight (with spa sture Readin 	Wet Fuel Load V 4 x 4: 2 acers): 7.2 gs (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4	Range (lb): 11 mount: 2 x 4: (with spacers): eight (lbs): 1.4 1.5	1.89 1.9-13.23-14.5 3 6.1 We Moi: 19.2 19.5 21.0	Test Total eight (with spa sture Readin 	Wet Fuel Load V 4 x 4: 2 acers): 7.2 gs (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Mois 19.2 19.5 21.0	Test Total eight (with spa	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4 5	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Mois 19.2 19.5 21.0	Test Total eight (with spa	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4 5 6	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Mois 19.2 19.5 21.0	Test Total eight (with spa	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4 5 6	Range (lb):	1.89 1.9-13.23-14.5 3 6.1 We Mois 19.2 19.5 21.0	Test Total eight (with spa	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:
Fuel Type & A Weight Piece: W 1 2 3 4 5 6	Range (lb): 11 mount: 2 x 4: (with spacers): eight (lbs): 1.4 1.5 3.4 3.4	1.89 1.9-13.23-14.5 3 6.1 Mois 19.2 19.5 21.0 19.1 20.6	Test Total eight (with spansture Readin 19.9 19.8 20.9 19.3 19.3	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:
Load Weight Fuel Type & A Weight Piece: W 1 2 3 4 5 6 7	Range (lb): 11 mount: 2 x 4: (with spacers): 1 eight (lbs): 1.4 1.5 3.4 3.4 3.4	1.89 1.9-13.23-14.5 3 6.1 We Mois 19.2 19.5 21.0 19.1 20.6 Spacer Moistu	Test Total eight (with spansture Readin 19.9 19.8 20.9 19.3 19.3 ure Readings	Wet Fuel Load V 4 x 4: 2 acers): 7,2 ags (%DB):	Fuel Type:

Test Crew: B. Davis

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 2

Model: 3100 ACC

Tracking Number: <u>2153</u> Date: <u>2////</u>

OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A.</u>

131, 592

Wood Heater Supplemental Data

Start Time: 10:53

Booth #: E/

Stop Time: 2:33

Stack Gas Leak Check:

Sample Train Leak Check:

Initial: good Final: good

A: 00 @ 8 "Hg B: 0.0 @ 6 "Hg

Calibrations: Span Gas

CO2: 9.99 CO: 1.00

	Pre	Test	Post Test	
	Zero	Span	Zero	Span
Time	Ø	Ø	225	225
CO ₂	0.03	10.03	0.02	9.87
co	-0.001	1.000	-0.022	0.948

Air Velocity (ft/min):

Initial: 450

Final: < 50

Scale Audit (lbs):

Initial: <u>///.//</u>___

Final: 10.0

Pitot Tube Leak Test:

Initial:

Stack Diameter (in):___

Induced Draft: ______ o.O

% Smoke Capture: 100 %

Flue Pipe Cleaned Prior to First Test in Series:

Date: 2/12/17

Initials: //

	Initial	Middle	Ending
P₀ (in/Hg)	28.82	28.78	28.73
RH (%)	N/A	N/A	N/A
Ambient (°F)	70	81	78

Background Filter Volume: _ 42 356

Technician Signature:

Tun	Tunnel Traverse						
Microtector Reading	dP (in H₂O)	T(°F)					
	0.046	76					
2	0.050	76					
3	0.050	76					
4	0.038	76					
1	0.054	76					
22	0.056	76					
3	0.052	76					
Y	0.040	76					
	Center:						
	0.053	76					

Tunnel Static Pressure (in H ₂ 0):				
Beginning of Test	End of Test			
65	45			

Date: 3/3/17

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 2

Model: 3100 ACC

Tracking Number: 2153 Date: 2/19/17
OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A. Test Crew: B. Davis

131, 592

ASTM E2515 Lab Sheet

				Weighing #1	Weighing #2	Weighing #3	Weighing #4	Weighing #5
				Date/Time:	<u>Date/Time:</u>	Date/Time:	<u>Date/Time:</u>	Date/Time:
Assem				2/22/17 0815 R/H %:	2/23/17 0750 R/H %:	4/24/17 0715 R/H %:	424/17 0105 R/H %	3/1//7 0930 R/H %:
<u>-7</u>				10.2	11.5	6.5	7.4	2,/
_	_			Temp:	<u>Temp:</u>	Temp:	<u>Temp:</u>	Temp:
				68.2	73.Y	69.6	69.2	68.9
				200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:
Date/T	ime in Dess	icator:		0.200	0.2000	O. 1999	0.1999	0.1999
	,			2 g Audit:	2 g Audit:	2 g Audit:	2 g Audit:	2 g Audit:
2/21/	17 0805	-		1.9999	1.9999	1-9999	1-9999	1.9999
•				100 g Audit:	100 g Audit	100 g Audit	100 g Audit	100 g Audit
				99.9983	99.9984	99.9974	99.9984	99.9989
				<u>Initials:</u>	<u>lnitials:</u>	Initials:	Initials:	<u>Initials:</u>
				BL	BL	ハム	DL	Bh
Train	Element	ID#	Tare (mg)	Weight (mg)	Weight (mg)	Weight (mg)	Weight (mg)	Weight (mg)
	Front Filter	D48	121.2	123.7	123.6	/23.6		
A (First	Rear Filter	N/A	10					
Hour)	Probe	N/4						
	O-Ring Set	N/4						
_	Front Filter	D49	122.7	123.0	122.9	122.9		
A (Remai-	Rear Filter	D50	124.0	124.2	124.1	124.1		
nder)	Probe	OESY	114145.3	114146.7	114 145,5	1141 45.5		
	O-Ring Set	R437	3415.9	3416.7	34166	3416.2	34/5.7	3415.6
	Front Filter	D51	120.8	123.2	123.0	123.0		
В	Rear Filter	D52	122.4	122.5	122, 4	122.4		
	Probe	8	115593.3	115594.6	115594.4	115894.4		
	O-Ring Set	R438	3402.6	34036	3403.4	3403.1	3402.9	3402, 9
BG	Filter	D47	/23.2	123.4	123. 4	123.4		

Technician Signature:	BD-

VERSION:	2.2	12/14/2009						
Manufacturer:	Hearth & Home		Appliance Type:	Non-Cat	(Cat, Non-	Cat, Pellet)		
Model:	3100 ACC							
Date:	2/14/2017		Temp. Units	F	(F or C)	Default	Fuel Value	es
Run:	2		Weight Units	lb	(kg or lb)		D. Fir	Oak
Control #:	0061WS066E.R2					HHV (kJ/kg)	19,810	19,887
Test Duration:	220					%C	48.73	50
Output Category:	2		Fuel [Data		%Н	6.87	6.6
				D. Fir		%O	43.9	42.9
Wood	Moisture (% wet):	16.58	HHV	19,810	kj/kg	%Ash	0.5	0.5
Loa	d Weight (lb wet):	13.30	%C	48.73				
Bur	n Rate (dry kg/h):	1.37	%Н	6.87		[N	lote 1: For	other fuels

Total Particulate Emissions: N/A g %O 43.9 %ASH 0.5 Note 1: fuel cor sample

Averages 0.50 5.35 #DIV/0! 302.52 78.30

					Temp	. (ºF)
Elapsed	Fuel Weight	Flue Ga	s Compositi	on (%)	Flue	Room
Time (min)	Remaining (lb)	CO	CO ₂	O_2	Gas	Temp
0	13.30	0.47	2.56		198.0	70.0
10	12.30	0.29	6.63		444.0	72.0
20	10.70	0.15	7.92		500.0	73.0
30	9.00	0.49	10.04		489.0	73.0
40	7.50	0.11	9.59		492.0	73.0
50	6.00	0.24	9.37		476.0	73.0
60	4.70	0.38	8.58		464.0	73.0
70	3.60	0.09	7.78		417.0	74.0
80	2.80	0.19	5.37		361.0	77.0
90	2.40	0.30	4.51		301.0	79.0
100	2.10	0.44	3.93		262.0	80.0
110	1.80	0.51	4.18		245.0	81.0
120	1.70	0.63	4.21		236.0	82.0
130	1.40	0.67	4.23		231.0	82.0
140	1.20	0.70	4.23		223.0	82.0
150	1.10	0.69	3.93		217.0	82.0
160	0.90	0.77	4.16		213.0	83.0
170	0.70	0.75	4.13		211.0	82.0
180	0.50	0.67	3.55		204.0	83.0
190	0.40	0.69	3.43		197.0	83.0
200	0.20	0.70	3.64		195.0	83.0
210	0.10	0.70	3.41		191.0	83.0
220	0.00	0.78	3.57		191.0	78.0

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

OMNI-Test Laboratories

Test Duration: Output Category:	3100 ACC 02/14/17 2 0061WS066E.F 220 2		Technicians:	
	HHV Basis	LHV Basis		
Overall Efficiency	69.7%	75.3%		
Combustion Efficiency	96.4%	96.4%		
Heat Transfer Efficiency	72%	78.2%		
			·	
Output Rate (kJ/h)	18,953	17,979	(Btu/h)	
Burn Rate (kg/h)	1.37	3.03	(lb/h)	
Input (kJ/h)	27,197	25,799	(Btu/h)	
Test Load Weight (dry kg)	5.03	11.09	dry lb	
MC wet (%)	16.58			
MC dry (%)	19.88			
Particulate (g)	N/A			
CO (g)	284			
Test Duration (h)	3.67			
			1	
Emissions	Particulate	CO		
g/MJ Output	#VALUE!	4.08		
g/kg Dry Fuel	#VALUE!	56.38		
g/h	#VALUE!	77.41		
Ib/MM Btu Output	#VALUE!	9.49		

20.92

VERSION: 2.2 12/14/2009

Air/Fuel Ratio (A/F)

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Run 3

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153 Run: 3

Test Date: 02/15/17

Burn Rate	1.14 kg/hr dry
Average Tunnel Temperature	84 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	15.98 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	10177.3 dscf/hour
Assertance Delta in	0.050 in the aut 1100

 Average Delta p
 0.058 inches H20

 Total Time of Test
 250 minutes

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	47.715 cubic feet 79 degrees Fahrenheit 45.010 dscf	34.037 cubic feet 83 degrees Fahrenheit 31.557 dscf	34.023 cubic feet 83 degrees Fahrenheit 31.257 dscf	8.073 cubic feet 83 degrees Fahrenheit 7.485 dscf
Total Particulates - m _n	0.1 mg	3.2 mg	2.9 mg	1.7 mg
Particulate Concentration (dry-standard) - C _r /C _s	0.000002 grams/dscf	0.00010 grams/dscf	0.00009 grams/dscf	0.00023 grams/dscf
Total Particulate Emissions - E _T	0.09 grams	4.21 grams	3.84 grams	2.31 grams
Particulate Emission Rate	0.02 grams/hour	1.01 grams/hour	0.92 grams/hour	2.31 grams/hour
Emissions Factor		0.88 g/kg	0.81 g/kg	0.94 g/kg
Difference from Average Total Particulate Emissions		0.18 grams	0.18 grams	
		D 17 . 0 .		

Dual Train Comparison Results Are Acceptable

FINAL AVERAGE RESULTS

Complete Test Run	
Total Particulate Emissions - E _T	4.02 grams
Particulate Emission Rate	0.97 grams/hour
Emissions Factor	0.85 grams/kg
First Hour Emissions	
Total Particulate Emissions - E _T	2.31 grams
Particulate Emission Rate	2.31 grams/hour
Emissions Factor	0.94 grams/kg

QUALITY CHECKS

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Train Precision ≤ 7.5%	1.09
Train Precision ±0.5 g/kg	0.08
Negative Probe Weight Eval.	OK
Pro-Rate Variation	OK
Stove Surface ΔT	OK

Wood Heater Preburn Data - ASTM E2780

Run: 3

Manufacturer: Hearth & Home
Model: 3100 ACC

Tracking No.: 2153

Project No.: 0061WS066E.REV002

Test Date: 2/15/2017

Beginning Clock Time: 11:36

Coal Bed
Range 2.5 3.1
(lb): (min) (max)

				Temperatures (°F)							
Elapsed Time (min)	Scale (lb)	Stack Draft (in H ₂ O)	FB Top	FB Bottom	FB Back	FB Left	FB Right	Avg. Firebox Surface	Stack	Ambient	
0	5.9	-0.048	496	464	490	602	654	541.2	378	78	
10	5	-0.045	515	476	438	578	630	527.4	360	78	
20	4.3	-0.043	495	463	405	537	596	499.2	349	77	
30	3.6	-0.04	498	441	397	509	577	484.4	340	77	
40	3.4	-0.03	408	421	357	485	552	444.6	254	76	
50	3.1	-0.023	317	407	321	445	519	401.8	219	76	
60	3.1	-0.02	268	397	282	407	479	366.6	196	75	
70	3.1	-0.02	238	384	251	368	431	334.4	178	77	

Wood Heater Test Data - ASTM E2780 / ASTM E2515

Run: 3		
Manufacturer:	Hearth & Home	
Model:	3100 ACC	-
Tracking No.:	2153	Total Sampling Time: 250 min
Project No.:	0061WS066E.REV002	Recording Interval: 10 min
Test Date:	15-Feb-17	· <u></u>
Beginning Clock Time:	12:36	Background Sample Volume: 47.715 cubic feet
Meter Box Y Factor:	1.001 (1)	0.993 (2) 1.014 (Amb)
Barometric Pressure	Begin Middle	End Average
	28.47 28.42	28.35 28.41 "Hg
OMNI Equipme	ent Numbers:	

PM Control Modules:	371, 372						
Dilution Tunnel MW(dry):	29.00 lb/l	b-mole	Avg. Tunnel Velocity:	15.98	ft/sec.		
Dilution Tunnel MW(wet):	28.78 lb/l	b-mole	Initial Tunnel Flow:	169.0	scfm		
Dilution Tunnel H2O:	2.00 pe	rcent	Average Tunnel Flow:	169.6	scfm		
Dilution Tunnel Static:	-0.660 "H:	20	Post-Test Leak Check (1):	0.000	cfm @	10	in. Ho
Tunnel Area:	0.19635 ft2		Post-Test Leak Check (2):	0.000	cfm @	12	in. Họ
Pitot Tube Cp:	0.99	Avera	ge Test Piece Fuel Moisture:	21.17	Dry Basis %		

										_
				Velocity 7	Traverse	Data				
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	Center	
Initial dP	0.052	0.058	0.056	0.046	0.052	0.058	0.056	0.046	0.058	"⊢
Temp:	83	83	83	83	83	83	83	83	83	°F
	V_{strav}	15.94	ft/sec		V _{scent}	16.61	ft/sec	Fp	0.960	-

	B. 102.
Technician Signature:	

						Partio	culate Sar	npling D	ata						Fuel We	eight (lb)					Temp	erature D	ata (°F)					Stack	Gas D	ata
Elapsed Time (min)	Gas Meter 1 (ft ³)	Gas Meter 2 (ft ³)	Sample Rate 1 (cfm)	Sample Rate 2 (cfm)	Orifice dH 1 ("H ₂ O)	Meter 1 Temp (°F)	Meter 1 Vacuum ("Hg)	Orifice dH 2 ("H ₂ O)	Meter 2 Temp (°F)	Meter 2 Vacuum ("Hg)	Dilution Tunnel (°F)	Dilution Tunnel Center dP	Pro. Rate 1	Pro. Rate 2	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Avg. Stove Surface Temp	Catalyst Exit Temp	Stack	Filter 1	Filter 2	Ambient	Draft ("H ₂ O)	CO ₂ (%)	CO (%)
0	0.000	0.000			1.50	76	-0.4	1.11	76	-1	83	0.058			12.5		226	380	235	358	419	324	N/A	188	84	85	78	-0.025	1.12	0.15
10	1.337	1.319	0.13	0.13	1.43	77	-0.38	1.13	77	-1	84	0.058	99	98	11.7	-0.8	412	363	213	332	376	339	N/A	433	85	85	77	-0.052	10.29	0.27
20	2.676	2.655	0.13	0.13	1.49	79	-0.44	1.14	80	-1.1	87	0.058	99	99	10.4	-1.3	551	341	228	342	366	366	N/A	472	86	88	77	-0.058	12	0.15
30	4.019	4.003	0.13	0.13	1.49	81	-0.43	1.13	82	-1.1	87	0.058	99	100	9.0	-1.4	576	322	263	379	385	385	N/A	428	87	89	77	-0.055	12.19	0.17
40	5.360	5.370	0.13	0.14	1.49	83	-0.43	1.19	83	-1.2	85	0.058	99	101	7.9	-1.1	550	308	274	410	398	388	N/A	399	88	89	78	-0.050	10.94	0.19
50	6.718	6.761	0.14	0.14	1.51	84	-0.45	1.20	84	-1.2	87	0.058	100	102	6.9	-1	525	297	295	433	420	394	N/A	385	87	89	77	-0.050	10.81	0.39
60	8.073	8.150	0.14	0.14	1.53	85	-0.4	1.14	85	-1.1	88	0.058	100	102	5.9	-1	510	290	315	455	448	404	N/A	380	87	88	77	-0.050		0.27
70	9.453	9.509	0.14	0.14	1.55	86	-0.46	1.10	85	-1	87	0.058	101	100	4.9	-1	531	284	335	474	468	418	N/A	392	87	88	77	-0.050	11.87	0.23
80	10.829	10.844	0.14	0.13	1.56	86	-0.46	1.09	85	-1	88	0.058	101	98	4.0	-0.9	541	282	361	487	481	430	N/A	393	87	88	77	-0.050		0.26
90	12.211	12.195	0.14	0.14	1.55	86	-0.46	1.15	86	-1.1	88	0.058	101	99	3.2	-0.8	529	281	372	489	499	434	N/A	358	87	89	77	-0.043	10.06	0.19
100	13.588	13.562	0.14	0.14	1.52	86	-0.42	1.16	86	-1.1	87	0.058	101	100	2.6	-0.6	447	283	371	472	504	415	N/A	296	87	88	77	-0.039	7.75	0.46
110	14.949	14.938	0.14	0.14	1.52	87	-0.41	1.18	86	-1.2	86	0.058	99	101	2.3	-0.3	370	287	355	451	494	391	N/A	257	86	87	78	-0.030	6.73	0.76
120	16.318	16.289	0.14	0.14	1.52	86	-0.41	1.12	86	-1	87	0.058	100	99	2.0	-0.3	332	291	342	433	473	374	N/A	243	86	87	82	-0.030	6.06	1.14
130	17.683	17.641	0.14	0.14	1.52	86	-0.41	1.12	86	-1	86	0.058	100	99	1.8	-0.2	293	294	317	415	444	353	N/A	218	86	86	82	-0.025	5.21	1.74
140	19.054	19.005	0.14	0.14	1.52	85	-0.41	1.15	85	-1.1	86	0.058	101	100	1.6	-0.2	268	297	310	398	422	339	N/A	209	85	86	82	-0.022	5.45	1.75
150	20.402	20.376	0.13	0.14	1.49	85	-0.37	1.15	85	-1.1	85	0.058	99	100	1.4	-0.2	255	298	307	387	409	331	N/A	205	85	85	82	-0.022	5.35	1.78
160	21.751	21.743	0.13	0.14	1.48	84	-0.37	1.14	84	-1.1	84	0.058	99	100	1.2	-0.2	246	299	307	379	401	326	N/A	200	84	85	81	-0.020	5.5	1.54
170	23.110	23.117	0.14	0.14	1.54	84	-0.42	1.16	83	-1.1	83	0.058	100	101	1.1	-0.1	241	300	305	374	395	323	N/A	199	84	84	81	-0.020	5.28	1.48
180	24.480	24.486	0.14	0.14	1.53	83	-0.42	1.16	83	-1.1	83	0.058	101	101	0.9	-0.2	235	301	307	370	388	320	N/A	191	83	83	81	-0.018	5.93	1.07
190	25.852	25.854	0.14	0.14	1.54	83	-0.42	1.15	83	-1.1	82	0.058	101	100	0.7	-0.2	233	302	318	370	385	322	N/A	191	83	83	81	-0.018	5.88	1.09
200	27.218	27.219	0.14	0.14	1.54	83	-0.42	1.15	83	-1.1	81	0.058	100	100	0.6	-0.1	231	306	321	370	383	322	N/A	191	82	82	78	-0.018	5.74	1.1
210	28.594	28.580	0.14	0.14	1.53	82	-0.42	1.16	83	-1.1	81	0.058	101	100	0.5	-0.1	230	310	320	369	382	322	N/A	189	82	82	80	-0.018	5.61	1.16
220	29.958	29.934	0.14	0.14	1.53	82	-0.42	1.12	83	-1	81	0.058	100	99	0.3	-0.2	228	313	318	366	380	321	N/A	187	81	82	80	-0.018	5.54	1.21
230	31.328	31.286	0.14	0.14	1.53	82	-0.42	1.13	83	-1	81	0.058	101	99	0.2	-0.1	225	315	313	361	378	318	N/A	185	81	81	80	-0.018	5.24	1.22
240	32.691	32.647	0.14	0.14	1.49	82	-0.39	1.15	82	-1.1	80	0.058	100	100	0.1	-0.1	221	316	307	353	374	314	N/A	184	81	81	76	-0.018	5.09	1.31
250	34.037	34.023	0.13	0.14	1.48	82	-0.37	1.16	83	-1.1	79	0.058	99	101	0.0	-0.1	216	315	302	344	368	309	N/A	181	80	80	75	-0.017	4.8	1.45
Avg/Tot	34.037	34.023	0.14	0.14	1.51	83		1.14	83		84	0.058	100	100								14.6				85	79	-0.032		

Wood Heater Lab Data - ASTM E2780 / ASTM E2515

Manufacturer:	Hearth & Home	Equipment N	Numbers:		
Model:	3100 ACC				
Tracking No.:	2153				
Project No.:	0061WS066E.REV002				
Run #:	3				
Date:	2/15/17				

TRAIN 1 (First Hour emissions)

Sample Component	Reagent	Filter, Probe		Weights	}
		or Dish #	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D53	125.2	123.5	1.7
C. Rear filter catch	Filter				0.0
D. Probe catch*	Probe				0.0
E. Filter seals catch*	Seals				0.0

Sub-Total Total Particulate, mg: 1.7

TRAIN 1 (Post First Hour Change-out)

The many transfer of the second secon					
Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D54	121.4	120.7	0.7
C. Rear filter catch	Filter	D55	122.9	122.8	0.1
D. Probe catch*	Probe	9	115691.6	115691.2	0.4
E. Filter seals catch*	Seals	R439	3295.1	3294.8	0.3

Sub-Total	Total Particulate, mg:	1.5

Train 1 Aggregate	Total Particulate, mg:	3.2
	rotar rantodiato, mg.	•

TRAIN 2

111/3/114 &					
Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D56	125.8	123.4	2.4
B. Rear filter catch	Filter	D57	119.7	119.6	0.1
C. Probe catch*	Probe	11	114189.0	114188.8	0.2
D. Filter seals catch*	Seals	R440	3487.9	3487.7	0.2

Total Particulate, mg:	2.9

AMBIENT

Sample Component	Reagent	Filter # or		Weights	
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch*	Filter	D58	122.6	122.5	0.1

Total Particulate, mg:	0.1
------------------------	-----

^{*}Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be part of the seal weight.

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Wood Heater Test Fuel Data - ASTM E2780

Manufacturer: Hearth & Home Model: 3100 ACC
Tracking No.: 2153

Project No.: 0061WS066E.REV002 Test Date: 2/15/2017

Run No.: 3

Firebox Volume (ft ³):	1.89
Fuel Piece Length (in):	14
2x4 Crib Weight (lb):	5.4
4x4 Crib Weight (lb):	
I	

Total Fuel Weight (Dry Basis, lb):	10.5	
Fuel Density (lb/ft ³ , Dry Basis):	27.60	ОК
Loading Density (lb/ft ³ , Wet Basis):	6.61	ОК
2x4 Percentage:	43%	ОК

Coal Bed Range (20-25%): 2.5 - 3.125

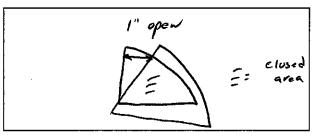
Test Fuel Piece	Weight (lb)	Size	Read	dings (Dry Bas	is %)	Dry Weight (lb)
1	1.5	2"x 4"	19.7	20.2	19.2	1.25
2	1.2	2"x 4"	23.1	19.7	20.2	0.99
3	1.5	2"x 4"	22.6	22.5	24.5	1.22
4	3.2	4"x 4"	21.3	20.5	21.2	2.64
5	3.5	4"x 4"	21.0	20.5	21.3	2.89
						-

7.7	gs (Dry Basis %))
7.7		
8.2		
7.8		

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 3

Model: 3100 ACC


_Tracking Number: <u>2153</u> Date: <u>2//5//7</u> OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,</u>

Test Crew: B. Davis 131, 592

Wood Heater Run Notes

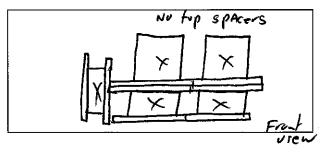
Air Control Settings

Primary:

Secondary:

fixed

Tertiary/Pilot:


Fan:

Preburn Notes

Time	Notes
50	Leveled coals

Test Notes

Sketch test fuel configuration:

Start up procedures & Timeline:

Bypass:

Door closed at: __

Fuel loaded by: 55 Seconds

Primary air:

Attest selling full 5:00

Notes:

Time	Notes
60	change Front filter in train A.

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 3

Model: 3100 ACC

Tracking Number: 2153

_Tracking Number: <u>2153</u> Date: <u>2//5//7</u>
OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,</u>

Test Crew: B. Davis 131, 592

Wood Heater Fuel Data

Fuel: Dougle	as fir, untreated ar		neater Fue ndard αrade		sional lumber		
	Pre-Burn Fuel .						
Calibration		(1) = 12% (2) = 22%	Actual Read Actual Read				
Piece 1 2 3 4 5 6	Length:	Reading: /8. 7 /9. / 2. 3	Piece: 7 8 9 10 11	Length: in in in in in in	Reading:		
Total Pre-	Burn Fuel Weight: _	2.8	Pre-Bu	n Fuel Average N	Moisture: <u>19.7</u>		
Time (cloc	ck): <u>10:45</u>	Room Tea	mperature (I	F): <u>67</u>	Initials: <u> おと</u>		
· · · · · · · · · · · · · · · · · · ·		Te	est Fuel	•			
Load Wei	olume (ft³): ght Range (lb): & Amount: 2 x 4 ight (with spacers):	<u> 1.9 - 13.23 - 14.5</u> : <u> 3 </u>	Tota	4 × 4: 2	Weight (lb):		
Piece:	Weight (lbs):	Mois	sture Readi	ngs (%DB):	Fuel Type:		
1	<u> 1.5 </u>	19.7	20.2				
2	<u> </u>	23.1	<u> 19.7</u>		<u>2×y</u>		
3	<u> </u>	22.6	22.5		•		
4 5	<u> </u>	<u>21.3</u> 21.0	20.5		<u> 474</u> <u> 477</u>		
6	<u> </u>			<u> </u>	- <u>- (</u>		
7	· · · · · · · · · · · · · · · · · · ·						
2.9 2.3 8.7 7.0	\$.7 8.7 8.2	Spacer Moistu <u>9.0</u> <u>7.0</u> <u>8.5</u> <u>7.7</u> <u>9.0</u> 7.6	8.2 7.8				
ı ime (ci	ock): ////5	Room ler	nperature (F): <u>67 </u>	nitials: /x		

Technician Signature:

Date: 3/3//7

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 3

Model: 3100 ACC Test Crew: B. Davis Tracking Number: 2153

__ Date:_*2/15/个*-

OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,

131, 592

Wood Heater Supplemental Data

Start Time: /2: 36

Booth #:___*£1*____

Stop Time: 16:46

Stack Gas Leak Check:

Sample Train Leak Check:

Initial: good Final: good

A: 0.0 @ 10"Hg B: 0.0 @ 12 "Ha

Calibrations: Span Gas

CO₂: 9.99 CO: 1.0

	Pre	Test	Post	t Test
	Zero Span		Zero	Span
Time	Ø	Ø	255	255
CO ₂	0.00	10.00	0.08	9.97
СО	-0.002	1.003	0.018	1.009

Air Velocity (ft/min):

Initial: 450

Final: 450

Scale Audit (lbs):

Initial: 10.0

Final: 10.0

Pitot Tube Leak Test:

Initial: <u>saud</u>

Final: good

Stack Diameter (in):__

Induced Draft: ______

% Smoke Capture: 100 %

Flue Pipe Cleaned Prior to First Test in Series:

Date: 2/12/17

Initials: _ろく____

	Initial	Middle	Ending
P₅ (in/Hg)	28.47	28.42	28.35
RH (%)	N/A	N/A	N/A
Ambient (°F)	78	82	75

Tunnel Static Pressure (in H₂0): Beginning of End of Test Test

Tunnel Traverse

dP (in

H₂O)

0.052

0.058

0.056

0.046

0.052

0.058 0.056

0.046 Center:

0.058

T(°F)

83

83

83

83

83

83

83 83

83

Microtector

Reading

2

3

4

1

Background Filter Volume: 47, 7/5

Date: 3/3//7

- .66

Technician Signature:

Control No. P-SFDT-0001, Effective Date: 01/12/2016

58 of 258

-.66

ASTM E2780 Wood Heater Run Sheets

Client: <u>Hearth & Home</u> Project Number: <u>0061WS066E.REV002</u> Run Number: 3

Tracking Number: 2153 Date: 2/15//7 Model: 3100 ACC

OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A, </u> Test Crew: B. Davis

<u>131, 592</u>

ASTM E2515 Lab Sheet

		Weighing #1	Weighing #2	Weighing #3	Weighing #4	Weighing #5		
				Date/Time:	<u>Date/Time:</u>	<u>Date/Time:</u>	<u>Date/Time:</u>	Date/Time:
Assembled By:			2/22/17 0115	2/23/17 0450	2/24/17/18	<u> </u>	·	
			['] R/H %:	<u> R/H %:</u>	<u>R/H %:</u>	<u>R/H %:</u>	R/H %:	
B DAVI S			10.2	11.5	6.4			
			<u>Temp:</u>	<u>Temp:</u>	Temp:	<u>Temp:</u>	<u>Temp:</u>	
				61.2	73.Y	69.6	3 2 21,31	
				200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:
Date/T	ime in Dess	icator:		0.200	0.2000	0.1999		
		-		2 g Audit:	2 g Audit.	2 g Audit:	2 g Audit:	2 g Audit:
2/21	117 0805			1.9999	1.9999	1-1919		
				100 g Audit:	<u>100 g Audit</u>	100 g Audit	100 g Audit	100 g Audit
				9 9.9983	9 9. 9984	79-99xy		
				<u>Initials:</u>	<u>Initials:</u>	Initials:	<u>Initials:</u>	Initials:
				134	<i>B</i> L	BL		
	- 1			Weight	Weight	Weight	Weight	Weight
Train	Element	ID#	Tare (mg)	(mg)	(mg)	(mg)	(mg)	(mg)
	Front				` "	(****)	3,	(3/
	Filter	D53	123.5	125.5	1254	125.2		
	Rear							
A	Filter	N/A						
(First Hour)	Probe	N/A						
	O-Ring Set	N/A				,		
	Front	- , , ,						
	Filter	D54	120.7	121.5	121.3	121.4		
A (Remai-	Rear Filter	D55	122.8	123.0	122 9	122.9		
nder)	Probe	9	115691.2	115691.7	1156915	1156916		
	O-Ring							
	Set	P 439	3294.8	3295.2	3295.1	3295.1		٠
	Front Filter	D56	123.4	126.8	125.9	125.8		
В	Rear Filter	1057	119.6	120.0	119.8	119.7		
	Probe	H	1141888	114189.2	114 189,0	114189.0		
	O-Ring Set	P2440	3487.7	3488.0	3487.8	3487.9		
BG	Filter	1758	122.5	122.8	122.7	122.6		
						<u>-</u>		

		_ ^	$\overline{}$
Technician	Signatura:	11/1) _
1 Commonant	Signature.	11111	

Date: 3/3//7

Run: 3 Control #: 0061WS066E.R2 Test Duration: 250 Output Category: 2 Wood Moisture (% wet): 17.47 Load Weight (Ib wet): 12.50 Burn Rate (dry kg/h): 1.12 Total Particulate Emissions: N/A Averages Averages Averages O.87 Fuel Data D. Fir %O WASh 6.87 Fuel Weight (15 wet): 12.50 %C 48.73 Burn Rate (dry kg/h): 1.12 %H 6.87 Total Particulate Emissions: N/A Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (Ib) CO CO CO CO Q Q Gas Temp 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	ifacturer: Hea		12/14/2009					
Date: 2/15/2017 Temp. Units F (F or C) Defaul Run: 3 Weight Units Ib (kg or Ib) (kg or Ib)				Applia	nce Type:	Non-Cat	(Cat, Non-	-Cat, Pellet)
Run: 3								
Control #: 0061WS066E.R2		5/2017				•	` '	Default
Test Duration: 250 Output Category: 2 Wood Moisture (% wet): 17.47 Load Weight (lb wet): 12.50 Burn Rate (dry kg/h): 1.12 South Particulate Emissions: N/A Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Time (min) Remaining (lb) CO CO2 O2 Gas Temp 0				We	ight Units	lb	(kg or lb)	
Output Category: 2 Wood Moisture (% wet): 17.47 HHV 19,810 kj/kg %Ash	control #: <mark>0061</mark>	1WS066E.R2						HHV (kJ/kg)
No Nood Moisture (% wet): 17.47 HHV 19,810 kj/kg %Ash Load Weight (lb wet): 12.50 %C 48.73 HHV 6.87 Surn Rate (dry kg/h): 1.12 %H 6.87								
Wood Moisture (% wet): 17.47 HHV 19,810 kj/kg %Ash Load Weight (lb wet): 12.50 %C 48.73 Burn Rate (dry kg/h): 1.12 %H 6.87 Total Particulate Emissions: N/A g %O 43.9 %ASH 0.5 Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO₂ O₂ Gas Temp 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	Category: 2				Fuel I	Data		
Load Weight (lb wet): 12.50 %C 48.73 Burn Rate (dry kg/h): 1.12 %H 6.87 Total Particulate Emissions: N/A g %O 43.9 %ASH 0.5 Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO₂ O₂ Gas Temp 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0						D. Fir		%O
Burn Rate (dry kg/h): 1.12 %H 6.87 Total Particulate Emissions: N/A g %O 43.9 %ASH 0.5 Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO₂ O₂ Gas Temp 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0			17.47		HHV	19,810	kj/kg	%Ash
Total Particulate Emissions: N/A g %O 43.9			12.50		%C	48.73		
Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F)					%Н	6.87		Ī,
Averages 0.87 7.45 #DIV/0! 275.15 78.77 Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO ₂ O ₂ Gas Temp 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	otal Particulat	e Emissions:	N/A g	J	%O	43.9		f
Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO ₂ O ₂ Gas Temp					%ASH	0.5		s
Temp. (°F) Elapsed Fuel Weight Flue Gas Composition (%) Flue Room Time (min) Remaining (lb) CO CO ₂ O ₂ Gas Temp								
Elapsed Time (min) Fuel Weight Remaining (lb) Flue Gas Composition (%) Flue Room Temp 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	•	Averages	0.87	7.45	#DIV/0!	275.15	78.77	
Elapsed Time (min) Fuel Weight Remaining (lb) Flue Gas Composition (%) Flue Room Time (min) 0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0						Temp	` '	N
0 12.50 0.15 1.12 188.0 78.0 10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	psed F	uel Weight	Flue Gas	•	ion (%)	Flue	Room	F.
10 11.70 0.27 10.29 433.0 77.0 20 10.40 0.15 12.00 472.0 77.0	(min) Re	maining (lb)	co	CO ₂	O_2	Gas	Temp	iı
20 10.40 0.15 12.00 472.0 77.0	0	12.50	0.15	1.12		188.0	78.0	C
20 10.40 0.13 12.00 472.0 17.0		11.70	0.27	10.29		433.0	77.0	V
30 900 017 1210 4280 770	20	10.40	0.15	12.00				a
30 3.00 0.11 12.13 420.0 17.0	30	9.00	0.17	12.19		428.0	77.0	
40 7.90 0.19 10.94 399.0 78.0								
50 6.90 0.39 10.81 385.0 77.0								
60 5.90 0.27 11.27 380.0 77.0								
70 4.90 0.23 11.87 392.0 77.0								
80 4.00 0.26 11.90 393.0 77.0								
90 3.20 0.19 10.06 358.0 77.0								
100 2.60 0.46 7.75 296.0 77.0								
110 2.30 0.76 6.73 257.0 78.0 120 2.00 1.14 6.06 243.0 82.0								
120 2.00 1.14 6.06 243.0 82.0 130 1.80 1.74 5.21 218.0 82.0								
130 1.60 1.74 5.21 216.0 62.0 140 1.60 1.75 5.45 209.0 82.0								
150 1.40 1.78 5.35 205.0 82.0								
160 1.20 1.54 5.50 200.0 81.0								
170 1.10 1.48 5.28 199.0 81.0								
180 0.90 1.07 5.93 191.0 81.0								
190 0.70 1.09 5.88 191.0 81.0								
200 0.60 1.10 5.74 191.0 78.0								
210 0.50 1.16 5.61 189.0 80.0								
220 0.30 1.21 5.54 187.0 80.0	210							
230 0.20 1.22 5.24 185.0 80.0		0.30	1.21	5.54		101.0		
240 0.10 1.31 5.09 184.0 76.0	220							
250 0.00 1.45 4.80 181.0 75.0	220 230	0.20	1.22	5.24		185.0	80.0 76.0	

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

50

6.6

42.9

0.5

Default Fuel Values D. Fir

19,810

48.73

6.87

43.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

OMNI-Test Laboratories

Manufacturer: Model: Date: Run: Control #:) Test Duration: Output Category: Test Results in A	3100 ACC 02/15/17 3 061WS066E.R2 250 2		Tec	hnicians:	
	HHV Basis	LHV Basis			
Overall Efficiency	74.9%	80.9%			
Combustion Efficiency	95.7%	95.7%			
Heat Transfer Efficiency	78%	84.6%			
Output Rate (kJ/h)	16,666	15,810	(Btu/h)		
Burn Rate (kg/h)	1.12	2.48	(lb/h)		
Input (kJ/h)	22,254	21,110	(Btu/h)		
	4.00	10.00			
Test Load Weight (dry kg)	4.68	10.32	dry lb		
MC wet (%)	17.47				
MC dry (%)	21.17				
Particulate (g)	N/A				
CO (g)	290				
Test Duration (h)	4.17				
Emissions	Particulate	СО	1		
g/MJ Output	#VALUE!	4.17	1		
g/kg Dry Fuel	#VALUE!	61.93	1		
g/h	#VALUE!	69.57	1		
lb/MM Btu Output	#VALUE!	9.70	1		

14.67

12/14/2009

2.2

VERSION:

Air/Fuel Ratio (A/F)

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Run 4

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153
Run: 4
Test Date: 02/16/17

Burn Rate	1.04 kg/hr dry
Average Tunnel Temperature	87 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	15.90 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	9922.9 dscf/hour

 Average Delta p
 0.056 inches H20

 Total Time of Test
 280 minutes

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)									
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	53.004 cubic feet 77 degrees Fahrenheit 49.385 dscf	38.259 cubic feet 86 degrees Fahrenheit 34.750 dscf	38.264 cubic feet 86 degrees Fahrenheit 34.450 dscf	8.108 cubic feet 86 degrees Fahrenheit 7.364 dscf									
Total Particulates - m _n	0.3 mg	4.8 mg	4.5 mg	3 mg									
Particulate Concentration (dry-standard) - C _r /C _s	0.000006 grams/dscf	0.00014 grams/dscf	0.00013 grams/dscf	0.00041 grams/dscf									
Total Particulate Emissions - E _T	0.28 grams	6.12 grams	5.77 grams	4.04 grams									
Particulate Emission Rate	0.06 grams/hour	1.31 grams/hour	1.24 grams/hour	4.04 grams/hour									
Emissions Factor		1.26 g/kg	1.19 g/kg	1.96 g/kg									
Difference from Average Total Particulate Emissions		0.17 grams	0.17 grams										
		Dual Train Comparison Results Are Acceptable											

FINAL AVERAGE RESULTS

Complete Test Run	
Total Particulate Emissions - E _T	5.94 grams
Particulate Emission Rate	1.27 grams/hour
Emissions Factor	1.23 grams/kg
First Hour Emissions	
Total Particulate Emissions - E _T	4.04 grams
Particulate Emission Rate	4.04 grams/hour
Emissions Factor	1.96 grams/kg

OLIALITY CHECKS

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Train Precision ≤ 7.5%	0.63
Train Precision ±0.5 g/kg	0.07
Negative Probe Weight Eval.	OK
Pro-Rate Variation	OK
Stove Surface ΔT	OK

Wood Heater Preburn Data - ASTM E2780

Run: 4

Manufacturer: Hearth & Home
Model: 3100 ACC

Tracking No.: 2153

Project No.: 0061WS066E.REV002

Test Date: 2/16/2017
Beginning Clock Time: 10:19

_						Tempera	tures (°F)			
Elapsed Time (min)	Scale (lb)	Stack Draft (in H ₂ O)	FB Top	·		FB Left	FB Right	Avg. Firebox Surface	Stack	Ambient
0	5.6	-0.045	588	436	533	641	551	549.8	414	76
10	4.9	-0.04	588	455	586	628	519	555.2	315	75
20	4.3	-0.038	549	451	553	579	485	523.4	292	75
30	3.8	-0.04	551	433	537	549	460	506	310	74
40	3.5	-0.031	523	415	521	533	447	487.8	274	74
50	3.1	-0.025	437	401	483	501	431	450.6	224	75
60	3	-0.02	377	390	435	464	411	415.4	204	75

Wood Heater Test Data - ASTM E2780 / ASTM E2515

Run: 4 Manufacturer: Model:	Hearth & Home	-
Tracking No.:	2153	Total Sampling Time: 280 min
Project No.:	0061WS066E.REV002	Recording Interval: 10 min
Test Date:	16-Feb-17	· · · · · · · · · · · · · · · · · · ·
Beginning Clock Time:	11:20	Background Sample Volume: 53.004 cubic feet
Meter Box Y Factor:	1.001 (1)	0.993 (2) 1.014 (Amb)
Barometric Pressure	Begin Middle	End Average
	27.99 27.97	27.95 27.97 "Hg
OMNI Equipme	ent Numbers:	

371, 372				
29.00 lb/lb-mole	Avg. Tunnel Velocity:	15.90 ft/sec.		
28.78 lb/lb-mole	Initial Tunnel Flow:	165.0 scfm		
2.00 percent	Average Tunnel Flow:	165.4 scfm		
-0.620 "H2O	Post-Test Leak Check (1):	0.000 cfm @	14	in. H
0.19635 ft2	Post-Test Leak Check (2):	0.000 cfm @	12	in. H
0.99 Aver	age Test Piece Fuel Moisture:	20.71 Dry Basis %		
	29.00 lb/lb-mole 28.78 lb/lb-mole 2.00 percent -0.620 "H2O 0.19635 ft2	29.00 lb/lb-mole Avg. Tunnel Velocity: 28.78 lb/lb-mole Initial Tunnel Flow: 2.00 percent Average Tunnel Flow: 0.19635 ft2 Post-Test Leak Check (1): 29.00 Post-Test Leak Check (2): 29.00 lb/lb-mole Avg. Tunnel Velocity: 19.00 Initial Tunnel Flow: 29.00 lb/lb-mole Avg. Tunnel Velocity: 29.00 Initial Tunnel Flow: 29.00 Initial	29.00 lb/lb-mole Avg. Tunnel Velocity: 15.90 ft/sec. 28.78 lb/lb-mole Initial Tunnel Flow: 165.0 scfm 2.00 percent Average Tunnel Flow: 165.4 scfm -0.620 "H2O Post-Test Leak Check (1): 0.000 cfm @ 0.19635 ft2 Post-Test Leak Check (2): 0.000 cfm @	29.00 lb/lb-mole Avg. Tunnel Velocity: 15.90 ft/sec. 15.90

				Velocity 7	Traverse I	Data			
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	Center
Initial dP	0.056	0.058	0.052	0.044	0.052	0.056	0.052	0.042	0.056
Temp:	84	84	84	84	84	84	84	84	84
	V_{strav}	15.85	ft/sec		V _{scent}	16.47	ft/sec	Fp	0.962

|--|

						Partio	culate San	npling D	ata						Fuel We	eight (lb)					Tempe	erature D	ata (°F)					Stack Gas Data		
Elapsed Time (min)	Gas Meter 1 (ft ³)	Gas Meter 2 (ft ³)	Sample Rate 1 (cfm)	Sample Rate 2 (cfm)	Orifice dH 1 ("H ₂ O)	Meter 1 Temp (°F)	Meter 1 Vacuum ("Hg)	Orifice dH 2 ("H ₂ O)	Meter 2 Temp (°F)	Meter 2 Vacuum ("Hg)	Dilution Tunnel (°F)	Dilution Tunnel Center dP	Pro. Rate 1	Pro. Rate 2	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Avg. Stove Surface Temp	Catalyst Exit Temp	Stack	Filter 1	Filter 2	Ambient	Draft ("H ₂ O)		CO (%)
0	0.000	0.000			1.46	74	-0.36	1.05	75	-0.9	84	0.056			12.7		371	387	428	457	407	410	N/A	202	81	84	76	-0.020	3.61	0.9
10	1.343	1.324	0.13	0.13	1.50	76	-0.47	1.12	77	-1.1	86	0.056	100	98	12.3	-0.4	494	372	367	416	377	405	N/A	360	85	87	76	-0.045	8.1	0.59
20	2.694	2.675	0.14	0.14	1.49	79	-0.45	1.17	79	-1.2	88	0.056	100	100	11.2	-1.1	601	353	353	393	360	412	N/A	391	86	89	75	-0.050	9.55	0.35
30	4.039	4.055	0.13	0.14	1.48	81	-0.45	1.17	81	-1.2	89	0.056	100	102	10.1	-1.1	636	335	364	395	357	417	N/A	376	88	90	75	-0.048	10.8	0.35
40	5.396	5.437	0.14	0.14	1.48	82	-0.45	1.15	83	-1.2	90	0.056	100	102	9.1	-1	662	320	365	400	355	420	N/A	379	88	89	75	-0.050	11.87	0.2
50	6.749	6.808	0.14	0.14	1.48	84	-0.45	1.12	84	-1.1	91	0.056	100	101	8.0	-1.1	667	308	401	433	358	433	N/A	382	88	89	75	-0.048	12.98	0.51
60	8.108	8.163	0.14	0.14	1.49	85	-0.44	1.11	85	-1.1	90	0.056	100	100	7.2	-0.8	606	298	421	463	366	431	N/A	329	88	89	76	-0.042	9.5	0.62
70	9.476	9.521	0.14	0.14	1.50	85	-0.42	1.12	85	-1.1	90	0.056	101	100	6.4	-0.8	589	290	439	477	371	433	N/A	343	88	89	76	-0.042	11.85	0.48
80	10.834	10.879	0.14	0.14	1.50	86	-0.43	1.12	86	-1.1	91	0.056	100	100	5.3	-1.1	640	284	457	491	379	450	N/A	371	88	89	76	-0.045	13.13	0.56
90	12.203	12.236	0.14	0.14	1.50	86	-0.42	1.12	86	-1.1	93	0.056	101	100	4.3	-1	675	280	490	506	392	469	N/A	372	89	89	77	-0.042	13.32	1.41
100	13.572	13.598	0.14	0.14	1.50	86	-0.42	1.13	86	-1.1	93	0.056	101	100	3.7	-0.6	626	279	515	513	407	468	N/A	315	89	90	77	-0.035	9.71	0.56
110	14.942	14.961	0.14	0.14	1.50	87	-0.41	1.15	87	-1.1	90	0.056	100	100	3.0	-0.7	534	281	514	504	412	449	N/A	275	88	90	77	-0.032	8.21	0.54
120	16.308	16.337	0.14	0.14	1.50	87	-0.41	1.09	87	-1.1	89	0.056	100	101	2.6	-0.4	482	284	505	491	409	434	N/A	255	88	89	77	-0.030	7.71	0.82
130	17.676	17.683	0.14	0.13	1.50	87	-0.41	1.10	87	-1.1	87	0.056	100	98	2.3	-0.3	438	288	484	472	403	417	N/A	233	87	89	78	-0.027	6.24	1.4
140	19.047	19.039	0.14	0.14	1.50	88	-0.41	1.12	87	-1.1	86	0.056	100	99	2.1	-0.2	402	292	481	454	391	404	N/A	220	87	88	76	-0.022	6.35	1.14
150	20.412	20.400	0.14	0.14	1.50	87	-0.41	1.12	87	-1.1	85	0.056	100	99	1.9	-0.2	380	295	476	444	382	395	N/A	213	86	88	76	-0.021	6.42	1.09
160	21.786	21.758	0.14	0.14	1.50	88	-0.41	1.12	87	-1.1	85	0.056	100	99	1.8	-0.1	367	298	469	436	376	389	N/A	210	86	88	76	-0.020	6.5	0.95
170	23.154	23.117	0.14	0.14	1.50	88	-0.41	1.12	88	-1.1	84	0.056	99	99	1.6	-0.2	359	301	462	427	372	384	N/A	208	85	88	76	-0.020	6.67	0.93
180	24.523	24.490	0.14	0.14	1.50	88	-0.41	1.17	87	-1.2	84	0.056	100	100	1.4	-0.2	354	303	459	417	370	381	N/A	206	85	88	76	-0.020	6.68	1.01
190	25.895	25.883	0.14	0.14	1.50	88	-0.41	1.16	88	-1.2	84	0.056	100	101	1.3	-0.1	349	305	465	411	368	380	N/A	204	85	88	76	-0.020	6.75	1.1
200	27.263	27.278	0.14	0.14	1.50	88	-0.41	1.17	88	-1.2	84	0.056	99	101	1.1	-0.2	339	306	442	405	364	371	N/A	196	85	88	77	-0.017	5.54	1.52
210	28.635	28.673	0.14	0.14	1.50	88	-0.41	1.18	88	-1.2	84	0.056	100	101	1.0	-0.1	331	307	429	398	358	365	N/A	194	85	87	77	-0.017	5.49	1.68
220	30.006	30.066	0.14	0.14	1.50	88	-0.41	1.17	88	-1.2	85	0.056	100	101	0.9	-0.1	325	306	424	391	353	360	N/A	192	85	88	79	-0.016	5.4	1.86
230	31.369	31.436	0.14	0.14	1.50	88	-0.42	1.13	88	-1.1	85	0.056	99	100	0.7	-0.2	320	304	421	387	348	356	N/A	190	85	88	79	-0.016	5.4	1.91
240	32.745	32.801	0.14	0.14	1.50	89	-0.41	1.12	88	-1.1	85	0.056	100	99	0.6	-0.1	318	302	418	384	344	353	N/A	191	85	88	79	-0.016	5.97	1.28
250	34.113	34.166	0.14	0.14	1.49	89	-0.41	1.12	89	-1.1	85	0.056	99	99	0.4	-0.2	319	301	416	384	341	352	N/A	193	85	88	79	-0.016	6	1.36
260	35.484	35.533	0.14	0.14	1.57	89	-0.48	1.13	89	-1.1	85	0.056	100	99	0.3	-0.1	320	301	416	384	339	352	N/A	194	86	89	80	-0.016	5.89	1.42
270	36.883	36.898	0.14	0.14	1.52	90	-0.44	1.13	89	-1.1	86	0.056	102	99	0.2	-0.1	319	302	410	384	338	351	N/A	191	86	89	80	0.016	5.6	1.36
280	38.259	38.264	0.14	0.14	1.52	90	-0.44	1.13	89	-1.1	86	0.056	100	99	0.0	-0.2	316	302	402	381	335	347	N/A	190	86	89	80	-0.016	4.99	1.45
Avg/Tot	38.259	38.264	0.14	0.14	1.50	86		1.13	86		87	0.056	100	100								62.8				88	77	-0.027		

Wood Heater Lab Data - ASTM E2780 / ASTM E2515

Manufacturer:	Hearth & Home	Equipment I	Numbers:	0023, 0283A
Model:	3100 ACC			
Tracking No.:	2153			_
Project No.:	0061WS066E.REV002			_
Run #:	4			_
Date:	2/16/17			

TRAIN 1 (First Hour emissions)

Sample Component	Reagent	Filter, Probe		Weights	}
		or Dish#	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D59	126.4	123.4	3.0
C. Rear filter catch	Filter				0.0
D. Probe catch*	Probe				0.0
E. Filter seals catch*	Seals				0.0

Sub-Total	Total Particulate, mg:	3.0

TRAIN 1 (Post First Hour Change-out)

The little (Coort Hotelson Change Cat)					
Sample Component	Reagent	Filter, Probe		Weights	}
		or Dish#	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D61	122.8	122.0	0.8
C. Rear filter catch	Filter	D60	121.2	120.8	0.4
D. Probe catch*	Probe	13	114322.5	114322.3	0.2
E. Filter seals catch*	Seals	R441	3433.6	3433.2	0.4

Sub-Total Total Particulate, mg: 1.8

Train 1 Aggregate	Total Particulate, mg:	4.8
mann i riggi ogato	Total Farticulate, 111g.	7.0

TRAIN 2

110 111 2					
Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D62	127.3	123.7	3.6
B. Rear filter catch	Filter	D63	120.9	120.8	0.1
C. Probe catch*	Probe	15	114343.4	114343.1	0.3
D. Filter seals catch*	Seals	R442	3348.9	3348.4	0.5

Total Particulate, mg:	4.5
------------------------	-----

AMBIENT

Sample Component	Reagent	Filter # or		Weights	
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch*	Filter	D64	122.5	122.2	0.3

Total Particulate, mg:	0.3
------------------------	-----

^{*}Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be part of the seal weight.

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Wood Heater Test Fuel Data - ASTM E2780

Manufacturer: Hearth & Home Model: 3100 ACC
Tracking No.: 2153

Project No.: 0061WS066E.REV002 Test Date: 2/16/2017

Run No.: 4

	Firebox Volume (ft ³):
	Fuel Piece Length (in):
	2x4 Crib Weight (lb):
	4x4 Crib Weight (lb):
th (in): 14 4 Crib nt (lb): 5.5 4 Crib	Length (in): 2x4 Crib Weight (lb): 4x4 Crib

Total Fuel Weight (Dry Basis, lb):	10.7	
Fuel Density (lb/ft ³ , Dry Basis):	28.22	ОК
Loading Density (lb/ft ³ , Wet Basis):	6.72	ОК
2x4 Percentage:	43%	ОК

Coal Bed Range (20-25%): 2.54 - 3.175

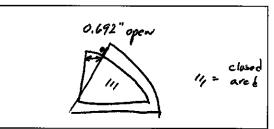
Test Fuel Piece	Weight (lb)	Size	Readings (Dry Basis %)			Dry Weight (lb)
1	1.4	2"x 4"	20.5	20.3	21.4	1.16
2	1.5	2"x 4"	19.9	19.7	20.1	1.25
3	1.4	2"x 4"	22.5	21.7	21.5	1.15
4	3.4	4"x 4"	20.5	20.6	20.8	2.82
5	3.4	4"x 4"	20.9	19.9	20.4	2.82
						-
						
	-					.
-						

S	Spacer Reading	ıs (Dry Basis %)
6.3	7.3		
6.3	11.3		
8.0	8.4		
6.5			
6.2			
12.4			
12.0			
10.4			
11.0			
9.4			
11.2			
9.0			
11.3	•		-

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 4

Model: 3100 ACC Test Crew: B. Davis Tracking Number: 2153 Date: 2/16/17


OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,

<u>131, 592</u>

Wood Heater Run Notes

Air Control Settings

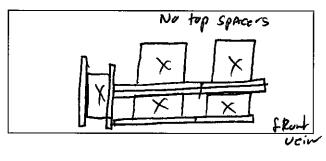
Primary:

Secondary:

fixed

Tertiary/Pilot:

Boast Air Not used


Fan:

Preburn Notes

Time	Notes
35 50	Repositioned preturn frel Leveled coal bed

Test Notes

Sketch test fuel configuration:

Start up procedures & Timeline:

Bypass:

Fuel loaded by: 60 seconds

Door closed at: 1:25

Primary air:

Notes:

Time	Notes
60	changed Front Filter ru train A.

Technician Signature:

Control No. P-SFDT-0001, Effective Date: 01/12/2016

68 of 258

Page 1 of 4

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 7

Model: 3100 ACC

Tracking Number: 2153

_Tracking Number: 2153 Date: 2/4//7-OMNI Equipment ID numbers: 567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,

Test Crew: B. Davis 131, 592

Wood Heater Fuel Data

Fuel: Douglas fir	, untreated and		ndard grade	or better dimens	sional lumber		
			-Burn Fuel				
Calibration:	Cal Value (1 Cal Value (2		Actual Read Actual Read				
Piece: 1 2 3 4	Length: 8 in 1 in 1 in 1 in 1 in 1 in	Reading: 22.4 21.6 22.0	Piece: 7 8 9 10	Length: in in in in	Reading:		
5 6	in in		11 12	in in			
Total Pre-Burn	Fuel Weight:	2.4	Pre-Bu	rn Fuel Average N	Noisture: 220		
Time (clock): _	0950	Room Te	mperature (F): <u>67</u>	Initials:		
		To	est Fuel				
Firebox Volum Load Weight R	e (ft³): tange (lb):	1, 89 - 13,23 - 145	Tes Tota	t Fuel Piece Lenç Il Wet Fuel Load \	oth (in): Veight (lb):		
* -	nount: 2 x 4: with spacers):		eight (with s _i	4 x 4: <u>2</u> pacers): <u>7,2</u>			
	ight (lbs):			ngs (%DB):	Fuel Type:		
	<u> </u>	20.5	<u> 20.3</u>		2vy		
	_	19.9 22.5	<u>19.7</u> 21.7				
		20.5	20.6				
	3.4	20.9	19.9	20.4			
6 7							
Spacer Moisture Readings (%DB)							
<u>6.3</u> <u>8.0</u>	12.4 9. 12.0 11	.2 7.3					
6.5 _ Time (clock):	<u>10.4 </u>		mperature (F	:): <u>67</u> Ir	nitials: <u>///</u>		

Technician	Signature:	BI
------------	------------	----

Date: 3/3//7-

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 4

Model: 3100 ACC

Tracking Number: <u>2153</u> Date: <u>2/16/12</u> OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,</u> Test Crew: B. Davis 131, 592

Wood Heater Supplemental Data

Start Time: //:20

Booth #: **€**/

Stop Time: 16:00

Stack Gas Leak Check:

Sample Train Leak Check:

A: <u>0.0</u> @ /9 "Hg B: 0.0 @ 12 "Hg

Calibrations: Span Gas

CO₂: 9.99 CO: 1.00

	Pre	Test	Pos	t Test
	Zero Span		Zero	Span
Time	Ø	Ø	284	284
CO ₂	0.00	10.00	0.06	9.99
СО	0.000	1.000	0.000	0.986

Air Velocity (ft/min):

Initial: <u>८ ५</u>०

Final: <50

Scale Audit (lbs):

Initial: 10.0

Final: 10.0

Pitot Tube Leak Test: Initial: 9000

Final: goud

Stack Diameter (in): 6"

Induced Draft: _________

% Smoke Capture: 100 %

Flue Pipe Cleaned Prior to First Test in Series:

Date: 12/2/17 Initials: 34

-	Initial	Middle	Ending
P₅ (in/Hg)	27.99	27.97	27.95
RH (%)	NA	N/A	N/A
Ambient (°F)	76	76	80

Tunnel Traverse Microtector dP (in T(°F) Reading H₂O) .056 84 2 .058 84 3 84 .052 4 84 044 84 .052 2 84 .056 84 .052 84 .072 Center: 84 056

Background Filter Volume: <u>53.00</u> 4	

Tunnel Static Pressure (in H₂0):				
Beginning of Test	End of Test			
620	620			

Technician Signature: 302=

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 4

Model: 3100 ACC

, 265, 255, 432, 413, 419, 23, 283A, Test Crew: B. Davis

131, 592

ASTM E2515 Lab Sheet

			Weighing #1	Weighing #2	Weighing #3	Weighing #4	Weighing #5	
				Date/Time:	Date/Time:	Date/Time:	Date/Time:	Date/Time:
Assembled By:			2/22/17 0815 R/H %:	2/23/17 08 50 R/H %:	<u> 2/2/17 0715</u> R/H %:	<u>R/H %.</u>	R/H %:	
<u>73</u>	BDAUIS			10.2	11.5	6.4		
			Temp:	<u>Temp:</u>	Temp:	Temp:	Temp:	
				68.2	73 4	69.6		
				200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:
Date/Ti	ime in Dessi	icator:		0.2000	0.2000	0.1999		
		-		2 g Audit:	2 g Audit:	2 g Audit:	2 g Audit	2 g Audit:
2/21/	117 0805			1.9999	1.9999	1.9999		
•				<u>100 g Audit:</u>	100 g Audit	100 g Audit	100 g Audit	100 g Audit
				99.1983	99.9984	99.998Y		
				Initials:	<u>Initials:</u>	<u>Initials:</u>	<u>Initials:</u>	<u>Initials:</u>
				BL	134	\$ 4		
Train	Element	ID#	Tare (mg)	Weight (mg)	Weight (mg)	Weight (mg)	Weight (mg)	Weight (mg)
	Front Filter	D59	123.4	126.5	126.4	126.4		
A (First	Rear Filter	N/A						
Hour)	Probe	N/A						
	O-Ring Set	N/A						
	Front Filter	D61-	1220	122.9	122.7	122.8		
A (Remai-	Rear Filter	D60	120.8	121.3	121.2	121.2		
nder)	Probe	13	114 322.3	114322,8	114322.6	114325		
	O-Ring Set	R 441	3 739. 3434.2	3434.0	3433.8	3433.6	e William ex	
	Front Filter	D62	123.7	127.5	127.2	127.3		
В	Rear Filter	D63	/208	121.2	120.9	120.9		
	Probe	15	114 343.1	114343.6	114343.4	114 343 4		
	O-Ring Set	R442	3348.4	3349./	3349 0	33 48, 9		
BG	Filter	D64	122.2	122.6	122.5	122.5		
:								

Manufacturer: Hearth & Home Mode: 3100 ACC	VERSION:	2.2	12/14/2009							
Date: 2/16/2017 Run: 4 Temp. Units Weight Units Ib (kg or lb) (F or C) Default (kg or lb) Control #: 0061WS066E Test Duration: 280 Fuel Data D. Fir Section (%) WHY (kJ/kg) Wood Moisture (% wet): 12.70 Load Weight (lb wet): 12.70 %C 4 WH Burn Rate (dry kg/h): 1.02 WH 6.87 Temp. (%F) Averages 1.01 7.80 #DIV/0! 261.21 76.97 Elapsed Time (min) Fuel Weight Remaining (lb) Flue Gas Composition (%) Fuel Remaining (lb) CO CO <th cols<="" td=""><td>Manufacturer:</td><td>Hearth & Home</td><td></td><td>Applia</td><td>nce Type:</td><td>Non-Cat</td><td>(Cat, Non-</td><td>Cat, Pellet)</td><td></td></th>	<td>Manufacturer:</td> <td>Hearth & Home</td> <td></td> <td>Applia</td> <td>nce Type:</td> <td>Non-Cat</td> <td>(Cat, Non-</td> <td>Cat, Pellet)</td> <td></td>	Manufacturer:	Hearth & Home		Applia	nce Type:	Non-Cat	(Cat, Non-	Cat, Pellet)	
Run: 4	Model:	3100 ACC		• • •	٠.		,	,		
Run: 4	Date:	2/16/2017		Te	emp. Units	F	(F or C)	Defau	lt	
Control #: 0061WS066E Test Duration: 280 Output Category: 2 Fuel Data D. Fir %C %C %C MHV 19,810 kj/kg %ASh Load Weight (lb wet): 12,70 %C 48,73 %C 48,73 MHV M					•		` ,			
Test Duration: 280 Output Category: 2 Wood Moisture (% wet): 17.16 Load Weight (bwet): 12.70 Burn Rate (dry kg/h): 1.02 Averages 1.01 Flue Gas Composition (%) Flue Ramining (lb) CO CO ₂ Q ₂ Burn Rate (12.70 CO ₂ Q ₃ Total Particulate Emissions: NA Remaining (lb) O 12.70 O 12.70 O 12.30 O 12.70 O 0.90 O 12.80 O 12.80 O 11.87 O 11.87 O 1.80 O 1.80		•					(1.9 01 1.0)	HHV (k.l/ka)	١	
Output Category: 2 Fuel Data D. Fir Plant Vocad Weight (lb wet): 12.70 %C 48.73 May be provided by the provided								٠	•	
Nood Moisture (% wet): 17.16					Fuel	Data				
Nood Moisture (% wet):	Output Category.	2			i uci					
Load Weight (ib wet): 12.70	Wood	Maiatura (0/ wat).	17.16		шшу		ki/ka			
Total Particulate Emissions: N/A g %O 43.9 43.9		` '					kj/kg	70ASI	,	
Total Particulate Emissions: N/A g %0 43.9					,					
Averages									1	
Averages 1.01 7.80 #DIV/0! 261.21 76.97 Temp. (%) Flue Remaining (lib) CO CO2 O2 Gas Temp	i otai Partio	culate Emissions:	N/A	g					f	
Elapsed Time (min) Remaining (lb) Flue Gas Composition (%) CO CO2 O2 O2 Flue Room Gas Temp 0 12.70 0.90 3.61 200.0 76.0 10 12.30 0.59 8.10 360.0 76.0 20 11.20 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 60 72.0 0.62 9.50 329.0 76.0 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 88 382.0 75.0 88 0 0.51 12.98 382.0 75.0 90 4.30 1.41 13.32 372.0 77.0 10 0.370 0.56 13.13 371.0 76.0 10 0.370 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 120 2.60 0.82 7.71 255.0 77.0 120 2.60 0.82 7.71 255.0 77.0 140 2.10 1.14 6.35 220.0 76.0 150 190 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 160 1.80 0.95 6.50 210.0 76.0 180 1.80 0.95 6.50 210.0 76.0 180 1.80 0.95 6.50 210.0 76.0 180 1.80 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 208.0 76.0 190 1.30 1.10 6.75 208.0 76.0 190 1.30 1.10 1.52 5.54 196.0 77.0 120 2.20 0.90 1.86 5.40 199.0 79.0 199.0 230 0.70 1.91 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.30 1.42 5.89 194.0 80.0					%ASH	0.5			8	
Elapsed Time (min) Remaining (lb) Flue Gas Composition (%) CO CO2 O2 O2 Flue Room Gas Temp 0 12.70 0.90 3.61 200.0 76.0 10 12.30 0.59 8.10 360.0 76.0 20 11.20 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 60 72.0 0.62 9.50 329.0 76.0 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 88 382.0 75.0 88 0 0.51 12.98 382.0 75.0 90 4.30 1.41 13.32 372.0 77.0 10 0.370 0.56 13.13 371.0 76.0 10 0.370 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 120 2.60 0.82 7.71 255.0 77.0 120 2.60 0.82 7.71 255.0 77.0 140 2.10 1.14 6.35 220.0 76.0 150 190 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 160 1.80 0.95 6.50 210.0 76.0 180 1.80 0.95 6.50 210.0 76.0 180 1.80 0.95 6.50 210.0 76.0 180 1.80 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 208.0 76.0 190 1.30 1.10 6.75 208.0 76.0 190 1.30 1.10 1.52 5.54 196.0 77.0 120 2.20 0.90 1.86 5.40 199.0 79.0 199.0 230 0.70 1.91 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.90 1.86 5.40 199.0 79.0 220 0.30 1.42 5.89 194.0 80.0		Avorages	1.01	7 90	#DIV/01	261 21	76 07		L	
Elapsed Time (min) Fuel Weight Remaining (lb) Flue Gas Composition (%) CO Flue Gas Composition (%) Gas Flue Room Temp 0 12.70 0.90 3.61 202.0 76.0 10 12.30 0.59 8.10 360.0 76.0 20 11.20 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 50 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0		Averages	1.01	7.00	#DIV/U:				_	
Time (min) Remaining (lb) CO CO2 O2 Gas Temp 12.70	Flancad	Fuel Weight	Flue Co	- Ci	.: (0/\		` '			
0 12.70 0.90 3.61 202.0 76.0 10 12.30 0.59 8.10 360.0 76.0 20 11.20 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 50 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 255 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0	•	_			` ,					
10 12.30 0.59 8.10 360.0 76.0 20 11.20 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 60 7.20 0.62 9.50 329.0 76.0 60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 150 150 150 150 150 150 150 150 15		• ,			U ₂					
20 11.20 0.35 9.55 391.0 75.0 30.0 75.0 30 10.10 0.35 9.55 391.0 75.0 30 10.10 0.35 10.80 376.0 75.0 40 9.10 0.20 11.87 379.0 75.0 50 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 120 2.60 0.82 7.71 255.0 77.0 140 2.10 1.14 6.35 220.0 76.0 150 150 1.90 1.09 6.42 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 190 1.30 1.10 6.68 206.0 76.0 190 1.30 1.10 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.86 5.40 192.0 79.0 220 0.90 1.88 5.97 191.0 79.0 220 0.40 1.36 6.00 193.0 79.0 220 0.30 1.42 5.89 194.0 80.0										
30									1	
40 9.10 0.20 11.87 379.0 75.0 50 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93									ľ	
50 8.00 0.51 12.98 382.0 75.0 60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 150 1.90 1.09 6.42 213.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01									_	
60 7.20 0.62 9.50 329.0 76.0 70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10										
70 6.40 0.48 11.85 343.0 76.0 80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52										
80 5.30 0.56 13.13 371.0 76.0 90 4.30 1.41 13.32 372.0 77.0 100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68										
100 3.70 0.56 9.71 315.0 77.0 110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91	80	5.30	0.56	13.13		371.0	76.0			
110 3.00 0.54 8.21 275.0 77.0 120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28	90	4.30	1.41	13.32		372.0	77.0			
120 2.60 0.82 7.71 255.0 77.0 130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36	100	3.70	0.56	9.71		315.0	77.0			
130 2.30 1.40 6.24 233.0 78.0 140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42										
140 2.10 1.14 6.35 220.0 76.0 150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
150 1.90 1.09 6.42 213.0 76.0 160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
160 1.80 0.95 6.50 210.0 76.0 170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
170 1.60 0.93 6.67 208.0 76.0 180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
180 1.40 1.01 6.68 206.0 76.0 190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
190 1.30 1.10 6.75 204.0 76.0 200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
200 1.10 1.52 5.54 196.0 77.0 210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
210 1.00 1.68 5.49 194.0 77.0 220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
220 0.90 1.86 5.40 192.0 79.0 230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
230 0.70 1.91 5.40 190.0 79.0 240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
240 0.60 1.28 5.97 191.0 79.0 250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
250 0.40 1.36 6.00 193.0 79.0 260 0.30 1.42 5.89 194.0 80.0										
260 0.30 1.42 5.89 194.0 80.0										
280 0.00 1.45 4.99 190.0 80.0	280	0.00	1.45	4.99		190.0	80.0			

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak

19,887

50

6.6

42.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

Default Fuel Values D. Fir

19,810

48.73

6.87

43.9

0.5

OMNI-Test Laboratories

Technicians:

Model:	3100 ACC						
Date:	02/16/17						
Run:	4						
Control #:	0061WS066E						
Test Duration:	280						
Output Category:	2						
Test Results in Accordance with CSA B415.1-09							
ſ	HHV Basis	LHV Basis	1				
Overall Efficiency	74.6%	80.7%					
Combustion Efficiency	94.0%	94.0%	1				
Heat Transfer Efficiency	79%	85.8%	1				
Trout Transfer Emoleticy	1070	00.070	ı				
Output Rate (kJ/h)	15,123	14,345	(Btu/h)				
Burn Rate (kg/h)		2.25	(lb/h)				
Input (kJ/h)	20,263	19,222	(Btu/h)				
		· · · · · · · · · · · · · · · · · · ·					
Test Load Weight (dry kg)	4.77	10.52	dry lb				
MC wet (%)	17.16						
MC dry (%)	20.71						
Particulate (g)	N/A						
CO (g)	406						
Test Duration (h)	4.67						
			•				
Emissions	Particulate	CO					
g/MJ Output	#VALUE!	5.75					
g/kg Dry Fuel	#VALUE!	84.97					
g/h	#VALUE!	86.91					
lb/MM Btu Output	#VALUE!	13.36					

13.83

Manufacturer: Hearth & Home

VERSION: 2.2 12/14/2009

Air/Fuel Ratio (A/F)

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Run 5

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153 Run: 5

Test Date: 02/16/17

Burn Rate	2.26 kg/hr dry
Average Tunnel Temperature Average Gas Velocity in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - Qsd	91 degrees Fahrenheit 17.31 feet/second 10730.9 dscf/hour
Average Delta p Total Time of Test	0.068 inches H20 120 minutes

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)	
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	23.625 cubic feet 79 degrees Fahrenheit 21.927 dscf	16.257 cubic feet 84 degrees Fahrenheit 14.813 dscf	16.416 cubic feet 85 degrees Fahrenheit 14.798 dscf	8.052 cubic feet 84 degrees Fahrenheit 7.337 dscf	
Total Particulates - m _n	0.2 mg	4.9 mg	6.2 mg	3.6 mg	
Particulate Concentration (dry-standard) - C _r /C _s	0.000009 grams/dscf	0.00033 grams/dscf	0.00042 grams/dscf	0.00049 grams/dscf	
Total Particulate Emissions - E _T	0.20 grams	6.90 grams	8.80 grams	5.27 grams	
Particulate Emission Rate	0.10 grams/hour	3.45 grams/hour	4.40 grams/hour	5.27 grams/hour	
Emissions Factor		1.53 g/kg	1.95 g/kg	1.38 g/kg	
Difference from Average Total Particulate Emissions		0.95 grams	0.95 grams		
	Dual Train Comparison Results Are Acceptable				

FINAL AVERAGE RESULTS

Complete Test Run	
Total Particulate Emissions - E _T	7.85 grams
Particulate Emission Rate	3.92 grams/hour
Emissions Factor	1.74 grams/kg
First Hour Emissions Total Particulate Emissions - E _⊤	5.27 grams
Particulate Emission Rate	5.27 grams/hour
Emissions Factor	1.38 grams/kg

OLIALITY CHECKS

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Train Precision ≤ 7.5%	6.03
Train Precision ±0.5 g/kg	0.42
Negative Probe Weight Eval.	OK
Pro-Rate Variation	OK
Stove Surface ΔT	OK

Wood Heater Test Results - ASTM E2780 / ASTM E2515

Manufacturer: Hearth & Home Model: 3100 ACC

Project No.: 0061WS066E.REV002

Tracking No.: 2153

Run: 5 Test Date: 02/16/17

Burn Rate	2.26	kg/hr dry
Average Tunnel Temperature	91	degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	17.31	feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	10730.9	dscf/hour
Average Delta p	0.068	inches H20
Total Time of Test	120	minutes

Corrected

	AMBIENT	SAMPLE TRAIN 1	SAMPLE TRAIN 2	FIRST HOUR FILTER (TRAIN 1)	
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	23.625 cubic feet 79 degrees Fahrenheit 21.927 dscf	16.257 cubic feet 84 degrees Fahrenheit 14.813 dscf	16.416 cubic feet 85 degrees Fahrenheit 14.798 dscf	8.052 cubic feet 84 degrees Fahrenheit 7.337 dscf	
Total Particulates - m _n	0.2 mg	5.5 mg	6.6 mg	3.6 mg	
Particulate Concentration (dry-standard) - C _r /C _s	0.000009 grams/dscf	0.00037 grams/dscf	0.00045 grams/dscf	0.00049 grams/dscf	
Total Particulate Emissions - E _T	0.20 grams	7.77 grams	9.38 grams	5.27 grams	
Particulate Emission Rate	0.10 grams/hour	3.89 grams/hour	4.69 grams/hour	5.27 grams/hour	
Emissions Factor		1.72 g/kg	2.07 g/kg	1.38 g/kg	
Difference from Average Total Particulate Emissions		0.80 grams	0.80 grams		
	Dual Train Comparison Results Are Acceptable				

FINAL AVERAGE RESULTS

Complete Test Run	
Total Particulate Emissions - E _T	8.57 grams
Particulate Emission Rate	4.29 grams/hour
Emissions Factor	1.90 grams/kg
First Hour Emissions	
Total Particulate Emissions - E _T	5.27 grams
Particulate Emission Rate	5.27 grams/hour
Emissions Factor	1.38 grams/kg

QUALITY CHECKS

	QUALITY CHECKS
Filter Temps < 90 °F	OK
Filter Face Velocity (47 mm)	OK
Dryer Exit Temp < 80F	OK
Leakage Rate	OK
Ambient Temp (55-90°F)	OK
Negative Probe Weight Eval.	OK
Pro-Rate Variation	OK
Stove Surface ΔT	OK

Technician Signature:

Control No. P-SSAR-0002

Wood Heater Preburn Data - ASTM E2780

Run: 5

Manufacturer: Hearth & Home
Model: 3100 ACC

Tracking No.: 2153

Project No.: 0061WS066E.REV002

Test Date: 2/16/2017

Beginning Clock Time: 16:31

Coal Bed
Range 2.4 3.0
(lb): (min) (max)

						Tempera	tures (°F)			
Elapsed Time (min)	Scale (lb)	Stack Draft (in H ₂ O)	FB Top	FB Bottom	FB Back	FB Left	FB Right	Avg. Firebox Surface	Stack	Ambient
0	14.7	-0.025	247	303	234	332	315	286.2	244	82
10	13.7	-0.045	304	301	236	316	294	290.2	398	82
20	10.7	-0.07	618	298	299	357	306	375.6	659	80
30	7.4	-0.07	746	304	402	460	369	456.2	685	80
40	4.9	-0.065	772	320	483	541	443	511.8	654	81
50	3.9	-0.06	712	342	510	581	493	527.6	548	80
60	3.2	-0.05	602	366	489	585	508	510	477	80
65	2.8	-0.04	461	390	448	570	505	474.8	373	79

Wood Heater Test Data - ASTM E2780 / ASTM E2515

Run: 5 Manufacturer: Model:	Hearth & Home	-
Tracking No.:	2153	Total Sampling Time: 120 min
Project No.:	0061WS066E.REV002	Recording Interval: 10 min
Test Date:	16-Feb-17	· <u></u>
Beginning Clock Time:	17:32	Background Sample Volume: 23.625 cubic feet
Meter Box Y Factor:	1.001 (1)	0.993 (2) 1.014 (Amb)
Barometric Pressure	Begin Middle	End Average
	27.95 27.96	27.98 27.96 "Hg
OMNI Equipme	ent Numbers:	

PM Control Modules:	371, 372					
Dilution Tunnel MW(dry):	29.00 lb/lb-i	mole Avg. Tunnel Veloci	ty: 17.31	ft/sec.		
Dilution Tunnel MW(wet):	28.78 lb/lb-ı	mole Initial Tunnel Flow	r: 177.5	scfm		
Dilution Tunnel H2O:	2.00 perce	ent Average Tunnel Flo	w: 178.8	scfm		
Dilution Tunnel Static:	-0.740 "H2O	Post-Test Leak Check (1	1): 0.000	cfm @	10	in. Ho
Tunnel Area:	0.19635 ft2	Post-Test Leak Check (2)): 0.000	cfm @	10	in. Họ
Pitot Tube Cp:	0.99	Average Test Piece Fuel Moistur	e: 23.84	Dry Basis %		

				Velocity 7	Traverse I	Data				1
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	Center	1
Initial dP	0.062	0.066	0.064	0.050	0.060	0.068	0.066	0.048	0.068	"H2
Temp:	92	92	92	92	91	91	91	91	92	°F
•	V_{strav}	17.34	ft/sec		V _{scent}	18.30	ft/sec	Fp	0.948	•

Technician Signature:	2_

						Partio	culate San	npling D	ata						Fuel We	eight (lb)					Temp	erature D	ata (°F)					Stack	Gas D	ata
Elapsed Time (min)	Gas Meter 1 (ft ³)	Gas Meter 2 (ft ³)	Sample Rate 1 (cfm)	Sample Rate 2 (cfm)	Orifice dH 1 ("H ₂ O)	Meter 1 Temp (°F)	Meter 1 Vacuum ("Hg)	Orifice dH 2 ("H ₂ O)	Meter 2 Temp (°F)	Meter 2 Vacuum ("Hg)	Dilution Tunnel (°F)	Dilution Tunnel Center dP	Pro. Rate 1		Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Avg. Stove Surface Temp	Catalyst Exit Temp	Stack	Filter 1	Filter 2	Ambient	Draft ("H ₂ O)		CO (%)
0	0.000	0.000			1.35	82	-0.34	1.04	81	-0.9	92	0.068			12.1		404	400	416	550	494	453	N/A	349	86	86	79	-0.040	4.87	0.64
10	1.343	1.371	0.13	0.14	1.50	81	-0.52	1.15	82	-1.1	94	0.068	100	101	9.9	-2.2	662	405	361	512	469	482	N/A	671	90	90	79	-0.070	16.97	1.79
20	2.688	2.724	0.13	0.14	1.47	82	-0.54	1.14	83	-1.1	96	0.068	100	100	7.1	-2.8	801	396	394	550	486	525	N/A	684	88	89	80	-0.070	17.68	1.22
30	4.019	4.087	0.13	0.14	1.44	83	-0.59	1.12	84	-1.1	99	0.068	99	101	4.7	-2.4	820	386	434	602	511	551	N/A	648	86	89	81	-0.070	16.7	0.53
40	5.359	5.443	0.13	0.14	1.46	84	-0.6	1.13	85	-1.1	97	0.068	99	100	3.2	-1.5	731	381	496	636	537	556	N/A	529	84	88	81	-0.060	11.07	0.04
50	6.707	6.806	0.13	0.14	1.47	85	-0.57	1.16	86	-1.1	93	0.068	100	100	2.4	-0.8	575	381	484	634	542	523	N/A	453	84	86	80	-0.052	8.78	80.0
60	8.052	8.177	0.13	0.14	1.47	85	-0.57	1.12	87	-1.1	91	0.068	99	100	1.7	-0.7	507	384	487	611	535	505	N/A	432	83	85	80	-0.050	8.5	0.09
70	9.414	9.548	0.14	0.14	1.49	85	-0.41	1.13	87	-1.1	90	0.068	100	100	1.2	-0.5	471	388	484	592	524	492	N/A	410	82	83	79	-0.050	7.48	0.2
80	10.777	10.921	0.14	0.14	1.49	85	-0.4	1.12	86	-1.1	87	0.068	100	100	0.9	-0.3	425	391	449	571	516	470	N/A	376	80	82	79	-0.043	6.56	0.44
90	12.132	12.293	0.14	0.14	1.49	85	-0.4	1.14	86	-1.1	86	0.068	99	100	0.6	-0.3	387	394	416	546	492	447	N/A	353	84	86	78	-0.040	6	0.58
100	13.492	13.667	0.14	0.14	1.49	85	-0.4	1.14	86	-1.1	85	0.068	100	100	0.4	-0.2	357	393	385	523	457	423	N/A	336	85	87	77	-0.040	5.51	0.72
110	14.876	15.042	0.14	0.14	1.54	85	-0.45	1.13	86	-1.1	84	0.068	101	100	0.1	-0.3	334	389	366	505	436	406	N/A	326	86	87	77	-0.040	5.49	0.72
120	16.257	16.416	0.14	0.14	1.54	85	-0.45	1.14	86	-1.1	83	0.068	101	100	0.0	-0.1	318	382	353	493	416	392	N/A	313	86	87	76	-0.037	4.68	0.83
Avg/Tot	16.257	16.416	0.14	0.14	1.48	84		1.13	85		91	0.068	100	100								60.4				87	79	-0.051		

Wood Heater Lab Data - ASTM E2780 / ASTM E2515

Manufacturer:	Hearth & Home	Equipment I	Numbers:	00023, 283A
Model:	3100 ACC			
Tracking No.:	2153			_
Project No.:	0061WS066E.REV002			
Run #:	5			_
Date:	2/16/17			

TRAIN 1 (First Hour emissions)

Sample Component	Reagent	Filter, Probe		Weights	3
		or Dish#	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D65	126.0	122.4	3.6
C. Rear filter catch	Filter				0.0
D. Probe catch*	Probe				0.0
E. Filter seals catch*	Seals				0.0

Sub-Total	Total Particulate, mg:	3.6

TRAIN 1 (Post First Hour Change-out)

Sample Component	Reagent	Filter, Probe		Weights	;
		or Dish #	Final, mg	Tare, mg	Particulate, mg
B. Front filter catch	Filter	D66	121.1	120.9	0.2
C. Rear filter catch	Filter	D67	121.1	121.7	-0.6
D. Probe catch*	Probe	23	114077.6	114076.9	0.7
E. Filter seals catch*	Seals	R443	3313.1	3312.1	1.0

Sub-Total	Total Particulate, mg:	1.3

Train 1 Aggregate	Total Particulate, mg:	4.9
Train i Aggregate	Total Farticulate, Ing.	4.9

TRAIN 2

Sample Component	Reagent	Filter, Probe		Weights	1
		or Dish #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D68	127.8	122.8	5.0
B. Rear filter catch	Filter	D69	119.9	120.3	-0.4
C. Probe catch*	Probe	24	114128.3	114127.8	0.5
D. Filter seals catch*	Seals	R444	3369.6	3368.5	1.1

Total Particulate, mg:	6.2
------------------------	-----

AMBIENT

Sample Component	Reagent	Filter # or	Weights		
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch*	Filter	D70	122.5	122.3	0.2

Total Particulate, mg:	0.2
------------------------	-----

^{*}Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be part of the seal weight.

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Wood Heater Test Fuel Data - ASTM E2780

Manufacturer: Hearth & Home Model: 3100 ACC
Tracking No.: 2153

Project No.: 0061WS066E.REV002 Test Date: 2/16/2017

Run No.: 5

Firebox Volume (ft ³):	1.89
Fuel Piece Length (in):	14
2x4 Crib Weight (lb):	5.6
4x4 Crib Weight (lb):	6.5
l	

Total Fuel Weight (Dry Basis, lb):	10.0	
Fuel Density (lb/ft ³ , Dry Basis):	26.03	ОК
Loading Density (lb/ft ³ , Wet Basis):	6.40	ОК
2x4 Percentage:	46%	ОК

Coal Bed Range (20-25%): 2.42 - 3.025

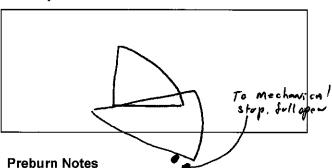
Test Fuel Piece	Weight (lb)	Size	Read	dings (Dry Basi	s %)	Dry Weight (lb)
1	1.4	2"x 4"	24.2	24.5	24.8	1.12
2	1.6	2"x 4"	22.0	24.7	22.4	1.30
3	1.4	2"x 4"	24.9	24.7	24.8	1.12
4	3.3	4"x 4"	22.2	23.4	23.8	2.68
5	2.8	4"x 4"	25.2	24.4	21.6	2.26
			·			

Spacer Readings (Dry Basis %)					
8.1	7.4				
8.2	7.4				
8.7	8.7				
8.6					
8.0					
8.0					
7.3					
7.4					
10.2					
8.3			<u> </u>		
7.5					
7.9					
8.1					

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 5

Model: 3100 ACC


_Tracking Number: <u>2153</u> Date: <u>2/16/f7</u> OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A,</u>

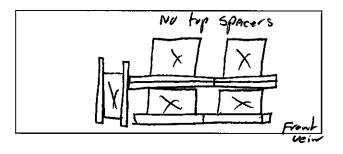
Test Crew: B. Davis 131, 592

Wood Heater Run Notes

Air Control Settings

Primary:

Secondary:


Tertiary/Pilot:

Fan:

Time	Notes
55	Leveled coals

Test Notes

Sketch test fuel configuration:

Start up procedures & Timeline:

Bypass:

Fuel loaded by: 38 second

Door closed at: 42 Seconds

Primary air:

Notes:

Time	Notes
60	changed filter in train A.
	·

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 5

Model: 3100 ACC

Tracking Number: <u>2153</u> Date: <u>2/u//}</u>
OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A, </u> Test Crew: B. Davis

131, 592

Wood Heater Fuel Data

Fuel: Douglas f	r, untreated and		Heater Fue ndard grade	Data or better dimension	onal lumber
<u> </u>			-Burn Fuel		
Calibration:	Cal Value Cal Value		Actual Read Actual Read		
Piece: 1 2 3 4 5	Length:	Reading:	Piece: 7 8 9 10 11	Length: //2 in //2 in //2 in //2 in //2 in in in in	Reading:
Total Pre-Bur	n Fuel Weight: _	13.7-	Pre-Bu	rn Fuel Average Mo	oisture: <u>20.65</u>
Time (clock):	4:40 BA	Room Te	emperature (=): _7 /	Initials:
<u> </u>	***	1	est Fuel		
Weight	mount: 2 x 4: (with spacers): eight (lbs):	_ 5.6 W		4 x 4:2 pacers): <i>4</i> . <i>5</i> ings (%DB):	Fuel Type:
riece: vv	eight (ibs): 7. Y		24.5		_2 ∀ ∀
2	1.6	22.0	24.7		274
3 _	1.4	24.9	24.7	•	244
4 _	3.3	22.2	23.4		4×y
5 _	2.8	25.2	24.4	216	<u>477</u>
6 _					
7 _					
				(0/ DD)	
٠,	.	Spacer Moist	ture Reading テンソ	, ,	
<u>8.1</u> <u>8.2</u>		<u>102 - 8 1</u> 8.3 - 7.4		<u> </u>	
<u> </u>		7.5			
8.6		7.9			
Time (clock): <i>4:40</i>	Room Te	emnerature (l	=): _ 7/ ini	tials:

Technician Signature:

Date: 3/3//7-

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 5

Model: 3100 ACC Tracking Number: 2153 Date: 7/14/11

Test Crew: B. Davis OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A.</u>

131, 592

Wood Heater Supplemental Data

Start Time: 17:32

Booth #:_ *£*/

Stop Time: 19:32

Stack Gas Leak Check:

Sample Train Leak Check:

Initial: good Final: good

A: <u>0.0</u> @ <u>10</u> "Hg B: 00 @ 10 "Hg

Calibrations: Span Gas

CO₂: **7.99** CO: 1.00

	Pre	Pre Test		Test
	Zero	Span	Zero	Span
Time	Ø	Ø	19:35	19:35
CO ₂	0.06	9.98	0.12	10.06
со	-0.001	1.000	-0.001	1.004

Air Velocity (ft/min):

Initial: 450

Final: 450

Scale Audit (lbs):

Initial: 10.0

Final: 10.0

Pitot Tube Leak Test: Initial:

Final: good

Stack Diameter (in): 6"

Induced Draft: _______ O. O

% Smoke Capture: 100 1/2

Flue Pipe Cleaned Prior to First Test in Series:

Date: 2/12/17

Initials: _____

	Initial	Middle	Ending
P₅ (in/Hg)	27.95	27.96	27.98
RH (%)	NA	N/A	NA
Ambient (°F)	79	80	76

Tunnel Traverse Microtector dP (in T(°F) Reading H_2O) 0.062 72 92 0.066 92 0.064 4 92 0.050 0.060 91 91 0.068 0.066 91 Y 91 0.048 Center: 0.068 92

Background Filter Volume: 23.625

Tunnel Static Pressure (in H₂0): Beginning of End of Test Test -.74 -.74

Technician Signature: 100, 1

Date: 3/3//7

ASTM E2780 Wood Heater Run Sheets

Client: Hearth & Home Project Number: 0061WS066E.REV002 Run Number: 5

Model: 3100 ACC

Tracking Number: <u>2153</u> Date: <u>4/4//7-</u> OMNI Equipment ID numbers: <u>567, 371, 372, 265, 255, 432, 413, 419, 23, 283A.</u> Test Crew: B. Davis

131, 592

ASTM E2515 Lab Sheet

				Weighing #1	Weighing #2	Weighing #3	Weighing #4	Weighing #5
				Date/Time:	Date/Time:	Date/Time:	Date/Time:	Date/Time:
Assem	bled By:			2/2/17 0015	2/23/17 085	1424/17 UNS R/H %:		
a	<u> </u>			<u>/R/H %:</u>	/ <u>R/H %:</u>	<u>Ř/H %:</u>	<u>R/H %:</u>	<u>R/H %:</u>
	DAVIS			10.2	11.5	6.4		
				Temp:	Temp:	<u>Temp:</u>	<u>Temp:</u>	<u>Temp:</u>
				67.2	73.4	69.6	Albert State	
				200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:	200 mg Audit:
Date/Ti	ime in Dessi	icator:		0.2000	0.200	0.1999		
				2 g Audit:	2 a Audit.	2 g Audit:	2 g Audit:	2 g Audit:
2/21/	117 0805			1.9999	1.9999	1.9999		
•				100 g Audit.	100 g Audit	100 a Audit	100 g Audit	100 g Audit
				99.9983	99.9984	99.9984		
				<u>Initials:</u>	Initials:	<u>Initials:</u>	<u>Initials:</u>	<u>Initials:</u>
					1)L	BC		
Train	Element	ID#	Tare (mg)	Weight	Weight	Weight	Weight	Weight
Italli		ייי שו	Tare (iiig)	(mg)	(mg)	(mg)	(mg)	(mg)
	Front	~						
	Filter	D45	1224	126.1	126.0	126.0		
Α	Rear							
(First	Filter	N/4						
Hour)	Probe	N/A						
	O-Ring							
	Set	NA					teat () is a significant	
	Front	000	12 - 0	1212		,,,		
	Filter	D66	120.9	17.7	121,	121.		
A	Rear	D67	121.7	1212	1917	,,,,		
(Remai- nder)	Filter	NOT	171.1	121.2	12/./	121.1		
iluei /	Probe	23	114076.9	114077.8	114 0776	114077.6		
	O-Ring	Dan		22127	, , ,	,,,,,		
	Set	12443	33/2.1	33/3.3	33/3./	33/3,/		
	Front	D68	1220	128.1	127 0	123 0		
	Filter Rear	1000	122.8	100.1	127.8	127.8		
_	Filter	D69	120.3	120.1	119.9	119.9		
В	10 Popular No. 2							
	Probe	24	114127.8	114128.6	114 128,3	114 128,3		
	O-Ring	R444	33685	3370.0	33697	3369.		
	Set							
BG	Filter	D70	122.3	122.5	122.8	122.5		
	1 2 27 27							
l								

Technician Signature: 1)

Date: 3/3//7

VERSION:	2.2	12/14/2009						
Manufacturer:	Hearth & Home		Appliance Type:	Non-Cat	(Cat, Non-	Cat, Pellet)		
Model:	3100 ACC							
Date:	2/16/2017		Temp. Units	F	(F or C)	Default	Fuel Value	es
Run:	5		Weight Units	lb	(kg or lb)		D. Fir	Oak
Control #:	0061WS066E.R2					HHV (kJ/kg)	19,810	19,887
Test Duration:	120					%C	48.73	50
Output Category:	4		Fuel [Data		%Н	6.87	6.6
				D. Fir		%O	43.9	42.9
Wood	Moisture (% wet):	19.25	HHV	19,810	kj/kg	%Ash	0.5	0.5
Load	d Weight (lb wet):	12.10	%C	48.73				
Bur	n Rate (dry kg/h):	2.22	%Н	6.87				

%O

%ASH

43.9

0.5

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Averages 78.92 0.61 9.25 #DIV/0! 452.31 Temp. (°F) **Elapsed Fuel Weight** Flue Gas Composition (%) Flue Room CO2 Remaining (lb) Time (min) CO Gas Temp 0.64 4.87 349.0 79.0 0 12.10 10 79.0 9.90 1.79 16.97 671.0 20 1.22 17.68 684.0 80.0 7.10 30 0.53 16.70 648.0 81.0 4.70 40 81.0 3.20 0.04 11.07 529.0 50 2.40 0.08 8.78 453.0 80.0 60 1.70 0.09 8.50 432.0 80.0 70 1.20 0.20 7.48 410.0 79.0 80 6.56 79.0 0.90 0.44 376.0 90 0.58 353.0 78.0 0.60 6.00 77.0 100 0.72 5.51 336.0 0.40 5.49 326.0 77.0 110 0.72 0.10 120 0.00 0.83 4.68 313.0 76.0

g

Total Particulate Emissions: N/A

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

OMNI-Test Laboratories

Manufacturer:	3100 ACC 02/16/17 5 061WS066E.R2 120 4	2	Technicians:	
Γ	HHV Basis	LHV Basis	7	
Overall Efficiency	69.8%	75.5%		
Combustion Efficiency	95.3%	95.3%	7	
Heat Transfer Efficiency	73%	79.2%		
			=	
Output Rate (kJ/h)	30,653	29,078	(Btu/h)	
Burn Rate (kg/h)	2.22	4.89	(lb/h)	
Input (kJ/h)	43,911	41,654	(Btu/h)	
Test Load Weight (dry kg)	4.43	9.77	dry lb	
MC wet (%)	19.25			
MC dry (%)	23.84			
Particulate (g)	N/A			
CO (g)	292			
Test Duration (h)	2.00			
		-		
Emissions	Particulate	CO		
g/MJ Output	#VALUE!	4.76		
g/kg Dry Fuel	#VALUE!	65.88		
g/h	#VALUE!	146.03		
lb/MM Btu Output	#VALUE!	11.07	_	
		•		
Air/Fuel Ratio (A/F)	12.38			

12/14/2009

VERSION:

2.2

85 of 258

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Section 4

Quality Assurance/Quality Control

QUALITY ASSURANCE/QUALITY CONTROL

OMNI follows the guidelines of ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," and the quality assurance/quality control (QA/QC) procedures found in *OMNI*'s Quality Assurance Manual.

OMNI's scope of accreditation includes, but is not limited to, the following:

- ANSI (American National Standards Institute) for certification of product to safety standards.
- To perform product safety testing by the International Accreditation Service, Inc. (formerly ICBO ES) under accreditation as a testing laboratory designated TL-130.
- To perform product safety testing as a "Certification Organization" by the Standards Council of Canada (SCC).
- Serving as a testing laboratory for the certification of wood heaters by the U.S. Environmental Protection Agency.

This report is issued within the scope of *OMNI*'s accreditation. Accreditation certificates are available upon request.

The manufacturing facilities and quality control system for the production of the 31M-ACC-C at Hearth and Home Technologies were evaluated to determine if sufficient to maintain conformance with OMNI's requirements for product certification. OMNI has concluded that the manufacturing facilities, processes, and quality control system are adequate to produce the appliance congruous with the standards and model codes to which it was evaluated.

This report shall not be reproduced, except in full, without the written approval of OMNI-Test Laboratories, Inc.

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Manufacturer's Quality Assurance Plan

The following quality assurance plan has been developed to ensure all that all units within the model line are similar in all material respects that would affect emissions to the sample tested under this report, in accordance with § 60.533 (m).

Removed as confidential business information

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Sample Analysis Analysis Worksheets

Analysis Worksheets
Tared Filter, Probe, and O-Ring Data

Tare Sheet: Probes 47mm Filters 100mm Filters O-Ring Pair_

Date/time Placed in Dessicator: 4/30/17 6805

Thermohygrometer ID #: OMVI- 00592

Prepared By: 13 DAUS

Analytical Balance ID #: Omu2-00023

Audit Weight ID #/Mass: omvi- 00283.4

	Date: //3//7	Date: 2///7	Date:	Date:			1
	Time: 0 820	Time: 01/5	Time:	Time:			
ID#	RH %: (2.5	RH %: 9. /	RH %:	RH %:	Date Used	Project Number	Run No.
	T (°F): 65.8	T (°F): 643	T (°F):	T (°F):	Dute Oscu	r roject Namber	Kun No.
	Audit: 5. 0000/1.9998		- ·	Audit:			
R435	3. 3812	3.3812			2/13/17	0061W SOLLE, R2	,
12436	\$ 3059	3 30.0			2/11/3		
R437	3.4160	34159			2/14/17		2
72 43 F	3 4024	3 4026			2/1/2		
R439	3.2948	3,2948	-	A CONTRACTOR OF THE PROPERTY O	2/15/17		3
PEYYO.	5,97,27	35872			1/3/17		3
८५५।	3. 4334	3 4332			2/16/17	The second of th	4
Q44Q	3.3486	33959					•/
R443	3.3121	3.3121			2/k/17	1995-1916 (1996) 1996-1997 (1995) 1996-1997 (1995) 1996-1997 (1995) 1996-1997 (1995)	5
RHH	31/85	3365			MUIT.		
RYYS	3.3724	3.37-22		The state of the s		BOTH STATE OF THE	
LATE LE	3,550 <u>2</u>	<u> </u>					
	a anna sa anna ann ann ann ann ann ann a	All particular venerals, man have represented to write transport and control transport					ALCOHOL STATE OF THE STATE OF T
		akina matang manaka ang kanang matang kalanggan kang manakan na manaka ka manang ma					
		kan ing panggang kanggang kanggan panggang panggang panggang panggang panggang panggang panggang panggang pang					
				APOST MATERIAL CONTROL OF THE CONTRO			
					Self-Land Artifact Control of the Co		
	initials. And	Initials: 🎝 🛴 🖫	mitrals:	Initials:			

Final Technician Signature: Control No. P-SFDP-0001.xls, Effective date: 9/9/2015

Evaluator signature:

90 of 258

Tare Sheet: Probes ____ 47mm Filters___ 100mm Filters___ O-Ring Pair___ Date/time Placed in Dessicator: 1/30//7 0805 Thermohygrometer ID#: OMNE-00592 Prepared By: B DAVIS Audit Weight ID #/Mass: Omni- 002834 / 100 5 Analytical Balance ID #: OMNE-00023 Date: 1/31//} Date: 2/1/17 Date: 2/2//7 Date: 1/3//7 Time: 0830 Time: 0820 Time: 0x15 Time: 1115 ID# RH %: 12-1 RH %: 9./ RH %: 10.2 RH %: 9. Y Date Used **Project Number** Run No. T (°F): 65-8 T (°F): 65 T (°F): 64.5 T (°F): 64.3 Audit: 99. 9985 Audit: 99. 9985 Audit: 99.9984 Audit: 99,9984 122, 7812 122.7808 122 7797 122.77 99 2/13/17 00 61WS CGE. 122 114.8601 114 8 6 99 OES 4 114.1453 114.1453 2/14/17 2 115,5792 115 5740 115 - 731 115 5 772 115.6913 115.69/2 2/15/17 1141889 114 1888 1/15/19 114.3223 114.32.23 2/14/17 1143432 119.8987 2/6/13 114.07 70 114.0769 2/16/17 5 2 Y 114.1280 1141278 25 114.2995 114, 2993 initials: fritials: "A initials //s/a Initials: 254

Date: 2/3/17

Evaluator signature:

91 of 258

Tare Sheet: Probes___ 47mm Filters___ 100mm Filters__ O-Ring Pair___ Date/time Placed in Dessicator: 1/30/17 0005 Thermohygrometer ID #: OMNF-00592 Prepared By: Brais Audit Weight ID #/Mass: /31/283/ / 500/200 Analytical Balance ID #: OMNT-00023 Date: 1/31//7 Date: 2/1//7 Date: Date: Time: 0820 Time: 0815 Time: Time: RH %: 12.5 RH %: 9.1 ID# RH %: RH %: Date Used Project Number Run No. T (°F): 643 T (°F): 65.8 T (°F): T (°F): Audit: 0. 5001/0.200 Audit: 0.500 /0.2000 Audit: Audit: DYI 0. 1232 0.1232 2/13/17 OGLUSOUE. 122 **DY2** 0.1204 0.1204 DY3 01224 0.1224 กษา 0.1237 0.1238 1745 0.1205 0.1205 0.1226 1)46° 0 1226 2/14/17 2747 0.1232 0. 1232 በሃሄ 0.1213 0.1212 D49 0. 1227 0.1227 1050 0.1239 0.1240 Ð 51 0.1208 0.1208 0 1224 D52 0.1223 D53 0.1235 2/15/17 0. 1234 0.1207 DSY -0.1207 1055 0.1228 0.1228 D56 0.1233 0.1234 0.1196 D57 0.1196 D58 0.1224 0.1225 1059 0. 1233 0.1234 2/14/17 1060 0.1207 0. 1208

Final Technician Signature: Control No. P-SFDP-0001.xls, Effective date: 9/9/2015

Initials: 🎢 😘

Date: 2/3//2

Initials:

Evaluator signature:

Initials: (A) Initials:

Tare Sheet: Probes___ 47mm Filters 100mm Filters O-Ring Pair___ Date/time Placed in Dessicator: 1/34/17 08/0 Thermohygrometer ID #: Omnus ~ 00 5 92 Prepared By: B DAVIS Analytical Balance ID #: OMNI-00023 Audit Weight ID #/Mass: 131/283/4 / 500, /2013 Date: 2/1//7 Date: 2/2/17 Date: Date: Time: 0815 Time: 0x30 Time: Time: RH %: 10.2 ID# RH %: 9./ RH %: RH %: Date Used Project Number Run No. T(°F): 45 T (°F): 64.3 T (°F): T (°F): Audit: 0.5001 /0.2000 Audit: 6.500/0.2000 Audit: Audit: 2061 6. 1220 0.1220 2/14/17 006/45066E. RZ 4 DOL 0,1238 0 1032 D63 0.1208 0.1208 0.1223 0 1222 065 0.1224 0.1224 2/16/17 6 12IO 0 1209 DGZ 0.1218 0.1217 0.1227 0.122 8 D69 0. 1204 0.1203 0 1223 DH 0.1226 0.1225 012 0 1201 0.KO D73 0.1213 0.1212 n 1238 01217 D75 0,1209 0.1208 D76 DIT 0.1239 0.1237 D78 0 1209 0 1208 D79 0.1220 0.1218 (i) 80 : 0 1233 0 1237 D81 0. 1206 0.1204 initiais. «I/AL» Initials # 🗚 initials Initials Final Technician Signature: Control No. P-SFDP-0001.xls, Effective date: 9/9/2015 Evaluator signature:

Calibrations

Methods EPA 28R, ASTM E2515, ASTM E2780

ID#	Lab Name/Purpose	Log Name	Attachment Type
1	Calibrator Dry Gas Meter	Rockwell Int'l Standard Test Meter	Calibration Certificate
23	Scale-Analytical Balance	Mettler Analytical Balance	Calibration Certificate
131	500 mg Weight	Ohaus Weight Standard, 500 mg	Calibration Certificate
132	10 lb Weight	Weight Standard, 10 lb.	Calibration Certificate
5142132	Platform Scale	Panther Platform Scale	Calibration Certificate
209	Barometer	Barometer – Princo	Manual Cover
296-T54	Tape Measure	Stanley Tape Measure	Calibration Log
371	Sample Box / Dry Gas Meter	Apex Automated Emissions Sampling Box	Calibration Log
372	Sample Box / Dry Gas Meter	Apex Automated Emissions Sampling Box	Calibration Log
340	Wood Moisture Meter	Moisture Meter - Delmhorst	See Test Run Notes
592	Thermohygrometer	Omega Digital Thermohygrometer	Calibration Log
410	Microtector Model 1430, oil filled	Dwyer Microtector	Manual, Photograph
419	Combustion Gas Analyzer	Infrared Gas Analyzer	Manual, See Test Run Notes
432	Moisture Meter Calibrator	Delmhorst Moisture Content Calibrator	Calibration Log
265	Vaneometer	Dwyer Vaneometer	Manual
413	Ambient filter Dry Gas Meter	Dry Gas Meter	Calibration Log
283A	Weight set	Troemner 21 pc Mass Set	Calibration Log

^{• *-} Equipment was leveled and zeroed prior to each test run as prescribed in the equipment manual.

CERTIFICATE OF CALIBRATION

CUSTOMER:

OMNI TEST LABS INC. PORTLAND OR

PO NUMBER: INST. MANUFACTURER: 160109

INST. DESCRIPTION:

ROCKWELL

P.D. METER S-275

MODEL NUMBER:

SERIAL NUMBER: RATED UNCERTAINTY: 684390L

+/- .5 % RD.

TOTAL measurement uncertainty: +/- .190 % RD. K=2

CALIBRATION DATE:

10/27/16

CALIBRATION DUE:

10/27/17

PROCEDURE: CALIBRATION FLUID:

NAVAIR 17-20MG-02 AIR @ 14.7 PSIA 70 F

STANDARD(S) USED:

A4, A24 DUE 05-2017

NIST TRACE #' S: AMBIENT CONDITIONS: 762 mm HGA 55 % RH 72 F

1331545884, 1390386562, 1424683640

CERTIFICATE FILE #: 426663.16

UNCERTAINTY GIVEN: NOTES: AS RECEIVED/ AS LEFT WITHIN SPECS. REFERENCE CONDITIONS ARE: 760 mm HGA 70 F **OMNI-00001**

TEST POINT	UUT	DM.STD.		
NUMBER	INDICATED	ACTUAL	CORRECTION	K
	SCFH	SCFH	FACTOR	FACTOR
1	0.6115	0.55	0.89943	66.709
2	9.1412	8.75	0.95721	62.682
3	53.5324	54.27	1.01378	59.185
4	100.1887	101.02	1.00830	59.506
5	136.8205	137.38	1.00409	59.756
6	178.5292	176.92	0.99099	60.546
7	215.1102	212.24	0.98666	60.811
8	250.5044	249.92	0.99767	60.140

AVERAGE (Y)= 0.98226405

All instruments used in the performance of the shown calibration have traceability to the National Institute of Standards and Technology (NIST). The uncertainty ratio between the calibration standards (DM.STD.) used and the unit under test (UUT) is a minimum of 4:1, unless otherwise noted. Calibration has been performed per the shown procedure number, in accordance with ISO 10012:2003, ISO 17025:2005, ANSI/NCSL-Z-540.3, and/or MIL-STD-45662A. Test methods: API2530-92 & ASME MFC-3M-1989.

Dick Munns Company • 10572 Calle Lee #130 • Los Alamitos, CA 90720

Phone (714) 827-1215 • Fax (714) 827-0823

ICK MUNNS COMPANY. The data shown applies only to the instrument being calibrated and under the stated conditions of calibration. This Calibration Certificate shall

Calibratio

95 of 258

Page 1 of

Certificate of Calibration

632003 Certificate Number:

Omni-Test Laboratories 13327 NE Airport Way Portland, OR 97230

Department: N/A

Parameter

Property #: OMNI-00023 User: N/A

Make: Mettler

Model: AE200

Serial #: E17657

Measurement Description

Order Date: 09/27/2016

Authorized By: N/A

Calibrated on: 09/27/2016 *Recommended Due: 03/27/2017 20 °C 44 % RH Environment:

> * As Received: Out of Tolerance * As Returned: Within Tolerance

Action Taken: Adjusted

Technician: 123

 $\bar{0}.\bar{0}\bar{0}\bar{0}\bar{1}$

0.0002

0.0002

0.0003

0.0003

PO: 160104 Calibration

UUT Uncertainty

40.0001g

80.0002g

120.0002 g

160.0003 q

200.0003 g

5.7Ē-04 Ü

5.7E-04 Ü

5.7Ē-04 Ü

5.8E-04 Ü

5.7Ē-04 Ü

Description: Scale, Procedure: DCN 500818/500887

Accuracy: ±0.0004g ±1 LSD * Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit. Uncertainties include the effects of the unit.

Range Unit

g

g

g

g

Standards Used

Manufacturer Model Nomenclature Due Date Std ID Trace ID 723A Rice Lake 1mg-200g (Class 0) Mass Set 12/01/2016 603626

Measurement Data

$Accredited = \ddot{U}$ **Before** Reference Min Max *Error Force 0.0005 0.0015 0.0000 0.0010 g 5.7E-04 Ü 0.00100 0.0095 0.00000.0100 q 5.7Ē-04 Ü 0.0105 0.01000 0.0995 0.1005 0.00000.1000 q 5.7Ē-04 Ü g 0.10000 5.7Ē-04 Ü g 0.50000 0.4995 0.5005 0.00000.5000 g g 1.00000 0.9995 1.0005 0.00001.0000 g 5.7Ē-04 Ü 5.7Ē-04 Ü 39.9995 40.0005 0.000540.0005 g g 40.00000 79.9995 80.0005 0.000580.0005 g 5.7Ē-04 Ü g 80.00000 5.7E-04 Ü g 120.00000 119.9995 120.0005 0.0008 120.0008 g g 160.00000 159.9995 160.0005 0.0010160.0010 g 5.8Ē-04 Ü 200.00000 199.9995 200.0005 0.0012200.0012 g 5.7Ē-04 Ü g Accredited = U After Reference Min *Error Max 0.0010 g 5.7E-04 Ü 0.00100 0.0005 0.0015 0.0000 0.00000.0100 g 5.7Ē-04 Ü g 0.0095 0.0105 0.01000 0.0995 0.00000.1000 q 5.7E-04 Ü g 0.10000 0.1005 0.4995 0.00000.5000 g 5.7Ē-04 Ü g 0.50000 0.5005 5.7E-04 Ü g 1.00000 0.9995 1.0005 0.00001.0000 g

39.9995

79.9995

119.9995

159.9995

199.9995

40.00000

80.00000

120.00000

160.00000

200.00000

40.0005

80.0005

120.0005

160.0005

200.0005

96 of 258 Certificate: 632003 Page 1 of 2

Reviewer

3 Issued 10/04/2016 Rev # 15

Inspector

Certificate: **632003** 97 of 258 Page 2 of 2

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc.

JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Certificate of Calibration

Certificate Number: 547339

Omni-Test Laboratories 13327 NE Airport Way Portland, OR 97230

Property #: OMNI-00131

User: N/A Department: N/A

> Make: Ohaus Model: 500mg Serial #: 27503

Description: Mass

Procedure: DCN 500901

Accuracy: CLASS F (±0.72mg)

Phone 503.786.3005 FAX 503.786.2994

PO: OTL-13-035 Order Date: 11/19/2013

Authorized By: N/A

Calibrated on: 12/02/2013 *Recommended Due: 12/02/2018 Environment: 20 °C 34 % RH

> As Received: Within Tolerance As Returned: Within Tolerance

JJ Calibrations, Inc.

0723.01 Calibration

Portland, OR 97267-2105

Action Taken: Calibrated

Technician: 34

* Any number of factors may cause the calibration item to drift out of calibration before the recommended interval has expired Refer to attachment for measurement results.

Standards Used

Std ID	<u>Manufacturer</u>	<u>Model</u>	Nomenclature Nomenclature	Due Date	Trace ID
432A	Sartorius	C-44	Microbalance 5.1g	03/11/2014	517747
723A	Rice Lake	1mg-200g (Class O)	Mass Set	09/05/2014	540048

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc.

JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Reviewer

Issued 12/06/2013

Rev #14

Certificate: 547339

Page 1 of 1

JJ Calibrations, Inc.

Manufacturer: Ohaus

Model: 500mg

Nomenclature: Mass Serial: 27503

Certificate #: 547339

Date: 02Dec2013

Technician: 34 **Calibration Interval:** 60 Months

Parameter	Nominal	JJ Standard	UUT	UUT ± Limit	Uncertainty ±
Mass Verification	500	499.99923	500.114	0.720	0.00576
Data in mg	300	499.99923	500.114	0.720	0.00576
Data in ring					
				 	
			<u> </u>		
			<u> </u>		
			,		
					¢.
			,		
			,		

SCALE WEIGHT CALIBRATION DATA SHEET

Weight to be calibrated:	
D Number:	
Standard Calibration Weight: <i>l()</i>	
D Number: 256	
Scale Used: <i>MTw-150K</i>	
D Number: 353	
Date: 2/19/3	By: A. Kravitz
	·
Standard Weight (A) Weight Verifie	d (D) Difference A/ E

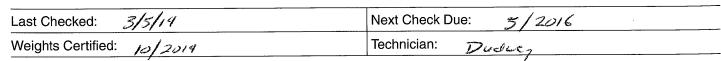
Standard Weight (A)	Weight Verified (B)	Difference	% Error
(Lb.)	(Lb.)	(A - B)	
(0.0	W.O	0.0	Ø

^{*}Acceptable tolerance is 1%.

This calibration is traceable to NIST using calibrated standard weights.

Technician signature:

\Date


<u> 2/19/13</u>

Becherini Scale Center, Inc. 317 E. Sprague Spokane, WA 99202

SCALE CALIBRATION RECORD

	orth + Ho		<u> </u>	Date: ///4/	201)
Work Order Number:	<u> </u>	47099	PO Number:		
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
1. MT	5142132	1000 x .1	<i>Ø</i>	Ø	Ø
Powther	PassFail	45	25	25.1	25.0
Notos:	0 5-06		100	100.1	100.0
Recobibert	ed Scole		200	200.3	200.0
Scole cho	ecks good		400	400.5	400.0
		ETC-7	P	Ø	P
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
2. MT	5237590	1000 x .1	Ø	Ø	ø
Pouther	PassFail	45	25.	25.0	25.0
Nata a.	1 5-16		100	100.0	100.0
Recolibrate.	4		200	199.9	200.0
Scole che	ecks good		400	400.1	400.0
		ETC-5	D	<i>b</i>	Þ
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
3. MT	5208324	1000 x .1	4	<i>Ø</i>	Ø
	(Pass.).Fail	45	25	25.0	25.0
Prolher		Serve and			
Postker Notes:		ETC-8	100	100.1	100.0
Notes: RecoLibrola	ed scale			100.1	100.0
Notes: Recolibrola	ecks good	ETC-8	100		
Notes: Recolibrola	ed scale	ETC-8	100	200.1	200.0
Notes: Recolibrola	ecks good	ETC-8	100	200.1	200.0
Notes: Recolibrold Scole che Display go Display show	Serial Number	ETC-8 Imorkers Lif) Specifications	100 200 400	200.1 400.2	200.0 400.0
Notes: Recolibrola Scole che Display show Equipment Mfg. 4. MT	ocks good ing bod so numerous tr	ETC-8	100 200 400 Ø Weight used	200. 1 400. 2 D Initial Readings	230.0 400.0 P
Notes: Recolibrola Scole che Disploy show Equipment Mfg. 4. MT Pouther Notes:	Serial Number 5237589 PassFail	ETC-8 Imorkers Lif) Specifications 1000 x .1	100 200 400 Ø Weight used	200.1 400.2 D Initial Readings	230.0 400.0 P Final Reading
Notes: Recolibrola Scole che Display show Equipment Mfg. 4. MT Porther Notes:	Serial Number 5237589 PassFail	ETC-8 Imorkers Lif) Specifications 1000 x .1	100 200 400 Ø Weight used	200.1 400.2 D Initial Readings	230.0 400.0 P Final Reading
Notes: Recolibrola Scole che Display show Equipment Mfg. 4. MT Porther Notes:	Serial Number 5237589 PassFail	ETC-8 Imorkers Lif) Specifications 1000 x .1	100 200 400 Ø Weight used	200.1 400.2 D Initial Readings D 25.2 100.6	200.0 400.0 \$\begin{align*}

Additional Comments:

453 National Weather Service Type OMNI 00209

Instruction Booklet

for use with

PRINCO

Fortin type mercurial

Barometers

Manufactured by

PRINCO INSTRUMENTS, INC. 1020 Industrial Blvd. Southampton, Pa. 18966-4095 U.S.A.

> Phone: 215 355-1500 Fax: 215 355-7766

469 NOVA * Economy Model

Tape Measure Calibration Log

Place the calibrated 12" ruler under the tape measure and verify that each ½" (i.e. 1.5", 2", 2.5") between 0 and 36" is within 1/8". CALE®RATED USENG ON エーロスコーロスコー OMNI- COLSI

		3			,	
Tape Measure Number	Description	1		Technician Initials	n Initials	
00296-T32	Stanley FatMax 16	7/25/12 7/2/13 7/8/14 7	7/2/15 45	46	F	77
00296- TSI	Ace 26 Tape Messure	4/13/13 9/23/14	12/15 20	¥	¥	Br
-T52	Powerlock		whs Le	な	de.	Br
-T53	د	9/2/12	4			-
- T11	intermate	Tape Measure (Cm) 11/30/12 728/14 2/25/15	#C	de.	35	·
-721	Tape Mes	1/20/12/11/21/13	4	¥		
-730		11/25/12	25			
-T31	Powerlock	11/21/13 11/18/14	1/25/15 82	A	72	K
+h L-	Work force Trace Mensure	11/30/2 11/21/13 1/26/14 17	-2P 51/52/n	Æ	な	Z
T 3 to Sconoco		1/20/12 1/21/13 11/18/14 1425/EST	WARN SC	-{c	4c	6
aht- 24-17	Tot Max	11/30/12 11/21/13 11/18/14 11/	142/15 de	-AC	ہر	B
	Dewalt = 16" Take Me	4, 1/27/2 21/21/2 21/02/21		9C	4	Br
-T 55	16' Tak	5/1/21 H1/62/21 81/81/21 2/02/21	11/5 2	Z	.)	pre
-T56	75' Tage 7	12/20/21 12/12/13 12/16/14 "	11/1/5 AC	7	St	K
- 754			7	¥	4	
-758	25' Tape Measure	12/20/12 12/12/13 12/16/14 3/	3/4/16 85	X	7	BR
-T59	Measure	11/21/21 2/4/21 1/2/21	1/15 SK	AC AC	AC.	7%
-T42	Powerbock 26 Tape Measure	11/21/13 11/18/14 Extent Service	und has de	72		m
= T31	FALMAY 16'	7/26/16	C82			
-751		42/10	11/1			
-737 -	Sharley Green Lock 21.	1/3/10	22			
- 740	Stabley FAT max 16' TAPE Messure	1/12/11	28			
.731	Staulor Power Lock Top Measure	1/29/14	000			
-747-	Work Force TAP Measure	1/67/1	780			-
154	Deuglt 16' TAPE Measure	11/11/12	70			

Thermal Metering System Calibration Y Factor

Manufacturer:	APEX
Model:	XC-60-EP
Serial Number:	702003
OMNI Tracking No.:	OMNI-00371
Calibrated Orifice:	∐Yes

Previous Cambration Comparision							
		Acceptable					
Date	9/15/2015	Deviation (5%)	Deviation				
y Factor	1.011	0.05055	0.010				
Acceptance	Acc						

Average Gas Meter y Factor 1.001		Orifice Meter dH@ N/A
Calibration Date:	01/18/17	
Calibrated by:	B. Davis	
Calibration Frequency:	Six months	
Next Calibration Due:	7/18/2017	, <u> </u>
Instrument Range:	1.000	cfm
Standard Temp.:	68	oF
Standard Press.:	29.92	—— "Hg
Barometric Press., Pb:	29.51	
Signature/Date:	De 1/24	//7

	Current Calibrat	ion	-	
Acceptable y	Deviation	0.020		
Maximum y I	Deviation	0.002		
Acceptable dl	H@ Deviation	N/A	7	
Maximum dH	@ Deviation	N/A]	
Acceptance	Acceptable			

		· · · · · · · · · · · · · · · · · · ·			
Reference Standard *					
Standard	Model	Standard Test Me	ter		
Calibrator	S/N	OMNI-00001			
	Calib. Date	27-Oct-16			
	Calib. Value	0.9823	y factor (ref)		

Calibration Parameters	Run 1	Run 2	Run 3
Reference Meter Pressure ("H2O), Pr	0.00	0.00	0.00
DGM Pressure ("H2O), Pd	3.29	1.50	0.80
Initial Reference Meter	279.203	290.3	295.8
Final Reference Meter	284.455	295.703	303.914
Initial DGM	0	0	0
Final DGM	5.191	5.37	8.09
Temp. Ref. Meter (°F), Tr	68.0	68.0	69.0
Temperature DGM (°F), Td	75.0	78.0	79.0
Time (min)	26.0	39.0	82.0
Net Volume Ref. Meter, Vr	5.252	5.403	8.114
Net Volume DGM, Vd	5.191	5.37	8.09
Gas Meter y Factor =	0.999	1,003	1.002
Gas Meter y Factor Deviation (from avg.)	0.002	0.002	0.001
Orifice dH@	N/A	N/A	N/A
Orifice dH@ Deviation (from avg.)	N/A	N/A	N/A

where:

- 1. Deviation = |Average value for all runs current run value|
- ** 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb + (Pr/13.6)) \times (Td + 460)] / [Vd \times (Pb + (Pd/13.6)) \times (Tr + 460)]$
- ** 3. $dH@=0.0317 \times Pd / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$
- * Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272, or NIST traceable laboratory
- ** Equations come from EPA Method 5

The uncertainty of measurement is ±0.14 ft³/min. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

-			perature C ethod 28R				
BOOTH: TEMPERATURE MONITOR TYPE: EQUIPMENT NUMBER:							
N/A		Na	tional Instrun	nents Logge	r	00371	, 00372
REFERENCE ME	TER EQUIP	MENT NUME	BER: 00373	Calibratio	n Due Da	te: 8/02/1	7
CALIBRATION	N PERFORM	ED BY:	DATE:	AMB TEMPER	IENT KATURE:		METRIC SSURE:
В	. Davis		1/19/17	6	8	29.51	
Input Temperature (F)	Ambient	Meter A	Meter B	Filter A	Filter B	Tunnel	FB Interior
0	~1	-1	~/	-1	-/	~1	~/
100	99	99	99	99	99	99	79
300	299	299	299	299	299	298	299
500	499	499	499	499	499	499	499
700	699	699	699	699	698	699	699
1000	998	998	998	998	998	998	998

Input (F)	FB Top	FB Bottom	FB Back	FB Left	FB Right	Imp A	lmp B	Cat	Stack
0	0	O	0	0	-/	-/	-/	-1	1
100	100	99	99	99	99	99	99	99	101
300	299	299	299	299	299	299	298	299	301
500	499	499	499	499	499	499	498	499	501
700	699	699	699	699	699	699	698	699	701
1000	999	999	999	999	999	99r	998	998	1000

1500 1498 2000 1997

Technician signature:	_ Date: _	1-19-17	
Reviewed By:	Date: _	1/20/2017	

DIFFERENTIAL PRESSURE GAUGE CALIBRATION DATA SHEET

Instrument to be calibra	ated: <u>"Pressure</u>	Transducer		
Maximum Range:)-1" WC	ID Numbe	er: <u>Omns. 0637/1</u>	3
Calibration Instrument:	Digital Manor	<u>meter</u> ID Numbe	er: <u>Omn t - 0063</u>	3
Date: 1/19/13-		Ву:	DAUIS	
This form is to be use	ed only in con	junction with Stan	dard Procedure	C-SPC.
Range of Calibration Point ("WC)	Digital Manometer Input ("WC)	Pressure Gauge Response ("WC)	Difference (Input - Response)	% Error of Full Span
0-20% Max. Range ⊘ - o -2	0.032	0.032	0	0
20-40% Max. Range 0.2 - 0.4	0.254	0.255	0.001	0.1
40-60% Max. Range 0.4 - 0.6	0.503	0.504	0.001	0.1
60-80% Max. Range	0.702	0.702	0	0
80-100% Max. Range 0. % - 1.0	0.904	0.95	0.001	0.1
*Acceptable tolerance	is 4%.			
The uncertainty of measure Accuracy Ratio) of at least 4	ment is ±0.4" WC 4:1.	. This is based on the r	eference standard ha	ving a TAR (Test
			·	
14			V	
Technician signature: _	Bull	2	Date: <i>1//9</i>	//7
Reviewed by:		`		0/2017
	•			

Thermal Metering System Calibration Y Factor

Manufacturer: APEX

Model: XC-60-EP

Serial Number: 702004

OMNI Tracking No.: OMNI-00372

Calibrated Orifice: Yes

Previous Calibration Comparision									
Acceptable									
Date	9/15/2015	Deviation (5%)	Deviation						
y Factor	1.003	0.05015	0.010						
Acceptance	Acc	eptable							

Orifice Average Gas Meter y Meter **Factor** dH@0.993 N/A Calibration Date: 01/18/17 Calibrated by: B. Davis Calibration Frequency: Six months Next Calibration Due: 7/18/2017 1.000 cfm Instrument Range: 68 oF Standard Temp.: 29,92 Standard Press.: "Hg "Hg Barometric Press., Pb: Signature/Date:

Current Calibration					
Acceptable y	0.020				
Maximum y I	Deviation	0.001			
Acceptable dl	H@ Deviation	N/A			
Maximum dH	@ Deviation	N/A			
Acceptance	Acceptable				

Reference Standard *							
Standard Model Standard Test Meter							
Calibrator	S/N	OMNI-00001					
	Calib. Date	27-Oct-16					
	Calib. Value	0.9823	y factor (ref)				

Calibration Parameters	Run 1	Run 2	Run 3
Reference Meter Pressure ("H2O), Pr	0.00	0.00	0.00
DGM Pressure ("H2O), Pd	2.34	1.50	0.80
Initial Reference Meter	304.4	312.9	320.9
Final Reference Meter	312.123	318	326.047
Initial DGM	0	0	0
Final DGM	7.723	5.088	5.184
Temp. Ref. Meter (°F), Tr	69.0	69.0	70.0
Temperature DGM (°F), Td	78.0	76.0	80.0
Time (min)	42.0	35.0	49.0
Net Volume Ref. Meter, Vr	7.723	5.100	5.147
Net Volume DGM, Vd	7.723	5.088	5.184
Gas Meter y Factor =	0.993	0,994	0.992
Gas Meter y Factor Deviation (from avg.)	0.000	0.001	0.001
Orifice dH@	N/A	N/A	N/A
Orifice dH@ Deviation (from avg.)	N/A	N/A	N/A

where:

- 1. Deviation = |Average value for all runs current run value|
- ** 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb + (Pr/13.6)) \times (Td + 460)] / [Vd \times (Pb + (Pd/13.6)) \times (Tr + 460)]$
- ** 3. $dH@=0.0317 \times Pd / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$
- * Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272, or NIST traceable laboratory
- ** Equations come from EPA Method 5

The uncertainty of measurement is ±0.14 ft³/min. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

Temperature Calibration EPA Method 28R, ASTM 2515									
BOOTH: TEMPERATURE MONITOR TYPE:							EQUIPMENT NUMBER:		
N/A		Na	tional Instrum	nents Logge	r	00371	, 00372		
REFERENCE METER EQUIPMENT NUMBER: 00373 Calibration Due Date: 8/02/17									
CALIBRATION PERFORMED BY: DATE: AMBIENT BAROMETRIC TEMPERATURE: PRESSURE:									
B. Davis 1/19/17 68					8	29.51			
Input Temperature (F)	Ambient	Meter A	Meter B	Filter A	Filter B	Tunnel	FB Interior		
0	~1	-1	~ /	-1	-/	-1	~/		
100	99	99	99	99	99	99	79		
300	299	299	299	299	299	298	299		
500	499	499	499	499	499	499	499		
700	699	699	699	699	698	699	699		
1000	998	998	998	998	998	998	998		

Input (F)	FB Top	FB Bottom	FB Back	FB Left	FB Right	Imp A	Imp B	Cat	Stack
0	0	O	0	0	-/	-/	-/	-1	1
100	100	99	99	99	99	99	99	99	101
300	299	299	299	299	299	299	298	299	301
500	499	499	499	499	499	499	498	499	501
700	699	699	699	699	699	699	698	699	701
1000	999	999	999	999	999	99r	998	998	1000

1500 1498 2000 1997

Technician signature:	_ Date: _	1-19-17
Reviewed By:	Date: _	1/20/2017

DIFFERENTIAL PRESSURE GAUGE CALIBRATION DATA SHEET

Instrument to be calibra	ated: Messur	e Iransducer		
Maximum Range:	9-1"	ID Numbe	er: <u>00372 B</u>	
Calibration Instrument:	Digital Manor	<u>neter</u> ID Numbe	er: <u>omne- 0063</u>	3
Date: 1/19/17		By:^\$	DAVIS	
This form is to be use	ed only in con	junction with Stand	dard Procedure	C-SPC.
Range of Calibration Point ("WC)	Digital Manometer Input ("WC)	Pressure Gauge Response ("WC)	Difference (Input - Response)	% Error of Full Span*
0-20% Max. Range <i>0、0</i> .2	0.052	0.052	0	0
20-40% Max. Range 0.2- 0.4	0.276	0.279	0.003	0.3
40-60% Max. Range <i>0.</i> 4 - <i>0.</i> 6	0.575	0.575	0	O
60-80% Max. Range <i>O.</i> 6 - <i>O.</i> Y	0.795 0.78 8	0.797	0.002	0.2
80-100% Max. Range	0.987	0.953	0.002	0.2
*Acceptable tolerance The uncertainty of measure Accuracy Ratio) of at least	ment is ±0.4" WC	C. This is based on the r	eference standard ha	aving a TAR (Test
Technician signature:	Dml	2	Date:// Date://	9//7 Z9/J017

VWR Temperature Hygrometer Calibration Procedure and Data Sheet

Frequency: Every Two Years
Step 1: Locate NIST traceable standard.
Step 2: Place unit to be calibrated, tracking No. OMNI- oo 592. , inside OMNI desiccate box on the same shelf with the NIST traceable standard.
Step 3: After a period of not less than four hours record the temperature and humidity of both units in the spaces provide below.
Step 4: If the unit to be calibrated matches the NIST standard within \pm 4%, it is acceptable. If not, the unit needs to be sent to a repair company or replaced.
Verification Data:
Date: _1/5/17 Technician:
Time in desiccate: 0900 Recording time: 0845 1/6//7
NIST Standard Temperature: <u>62.5</u> °F NIST Standard Humidity: <u>9.5</u>
Test Unit Temperature Reading: <u>66.9</u> °F Test Unit Humidity Reading: <u>6,7</u>
Test unit OMNI- <u>00592</u> is <u>X</u> or was not within acceptable limits.
Fechnician Signature:
Comments: Humidity Results of 00592 are wilhin ± 4% of Reference metal

Certificate of Calibration

Certificate Number: 629694

Omni-Test Laboratories 13327 NE Airport Way

Portland, OR 97230

Property #: OMNI-00410

User: N/A

Department: N/A

Make: Dwyer

Model: 1430

Serial #: OMNI - 00410

Description: Microtector

Procedure: 500908

Accuracy: ±0.00025" WC

* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit.

Uncertainties include the effects of the unit.

Calibrated micrometer head only per Bruce Davis.

Limited Calibration - Calibrated micrometer head only.

Standards Used

Std ID Manufacturer <u>Model</u> E8FED2 541A Select

Nomenclature

8 Piece Gage Block Set

PO: 160099

Authorized By: N/A

Order Date: 08/18/2016

Calibrated on: 08/29/2016

Environment: 19 °C 50 % RH

Action Taken: Calibrated

* As Received: Other - See Remarks

*Recommended Due: 08/29/2017

* As Returned: Limited

Technician: 34

Due Date 11/24/2016

JJ Calibrations, Inc. 7007 SE Lake Rd

Portland, OR 97267-2105

Phone 503.786.3005 FAX 503.786.2994

> Trace ID 607288

Calibration

Parameter

Measurement Data

Measurement Description	Range Unit					UUT Uncertainty
Before/After		Reference	Min	Max	*Error	Accredited = ✓
Length	Inch	0.1300	0.129	0.131	0.000	0.130 lnch 1.1E-03 ✓
	Inch	0.3850	0.384	0.386 -	0.000	0.385 Inch 1.1E-03 ✓
	Inch	0.6150	0.614	0.616		0.615 Inch 1.1Ē-03 🗸
	Inch	0.8700	0.869	0.871	0.001	0.871 Inch 1.1E-03 ✓
	Inch	1.0000	0.999	1.001	0.001	1.001 Inch 1.1E-03 ✓

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

3 Issued 08/31/2016

Rev #15

Inspector

Certificate: 629694

111 of 258

Page 1 of 1

ZRE

NDIR/02

USER'S

MANUAL

1312 West Grove Avenue Orange, CA 92865-4134

Phone: 714-974-5560 Fax: 714-921-2531

www.gasanalyzers.com

WOOD MOISTURE CONTENT CALIBRATION WORKSHEET

Moisture Content Standard OMNI ID #:	<i>∞</i> 432
Reference Moisture Content Standard:	OMNI # 00430

Date	Temp.	Barometric Pressure	Fixed Moisture %	Fixed Moisture %	Observed Moisture %		Initials
5/20/2016	69°F	29. 90 j. Hi	22%	12%	220%	12.0%	BL
5/20/2016 W/14/16	68'F	29. 90 in Hg	22%	12%	22.0%	12.0%	002
			22%	12%			
	"		22%	12%			
			22%	12%			
			22%	12%			
			22%	12%			
	·		22%	12%			
			22%	12%			
			22%	12%			
			22%	12%			
			22%	12%			
	· · · · · · · · · · · · · · · · · · ·		22%	12%			
			22%	12%			
			22%	12%			-
		<u> </u>	22%	12%			
			22%	12%			
			22%	12%			

Notes	3			
	<u> </u>			
				. <u>.</u>
	Technician signature: _	300	Date: <u>\$\int_{3}/16</u>	

CALIBRATION RECORD

VANEOMETER AIR VELOCITY METER OMNI #00265

CALIBRATIONS SERVICE RECORD			
DATE	BY	RESULTS	DATE OF NEXT CALIBRATION
10/5/10	50	INSTALLED WOW VOW PR. FACTORY	4/5/11
4614	500	n u u u u	10/6/4
7/21/15	te	Installed new vane from manufacturer	1/21/16
3/4/16	30	Installed New VANE from MANUfacturer	9/4/16
8/30/16	352	Installed wew vane from Manufacturer	3/3//2
3/9/17	20	Fresholled New Vane from Manufacture R	9/9/17

		·	
		·	
-		:	
	,		

Thermal Metering System Calibration Y Factor

Manufacturer: APEX Instruments

Model: DGM-SK25DA-TL

Serial Number: 8004298

OMNI Tracking No.: OMNI-00413

Calibrated Orifice: Yes

Average Gas Meter y Factor 1.014		Orifice Meter dH@ N/A
Calibration Date:	09/22/16	
Calibrated by:	B. Davis	
Calibration Frequency:	Six month	
Next Calibration Due:	3/22/2017	
Instrument Range:	1.000	cfm
Standard Temp.:	68	oF
Standard Press.:	29.92	— "Hg
Barometric Press., Pb:	30.12	"Hg
Signature/Date:	B. 102.	

Previous Calibration Comparision

		Acceptable	
Date	4/4/2016	Deviation (5%)	Deviation
y Factor	1.004	0.0502	0.010
Acceptance	Acce		

Current Calibration

Acceptable y	0.020		
Maximum y I	0.017		
Acceptable dI	N/A		
Maximum dH@ Deviation		N/A	
Acceptance	Acceptable		

	Referen	ce Standard *	
Standard	Model	Standard Test Me	ter
Calibrator	S/N	OMNI-00001	
	Calib. Date	05-Nov-15	
	Calib. Value	0.9983	y factor (ref)

Calibration Parameters	Run 1	Run 2	Run 3
Reference Meter Pressure ("H2O), Pr	-5.00	-2.15	-0.50
DGM Pressure ("H2O), Pd	0.00	0.00	0.00
Initial Reference Meter	997.2	1005.223	1017.7
Final Reference Meter	1004.097	1017.117	1032.573
Initial DGM	0	0	0
Final DGM	6.598	11.671	14.862
Temp. Ref. Meter (°F), Tr	70.0	71.0	71.0
Temperature DGM (°F), Td	70.0	71.0	71.0
Time (min)	6.0	24.0	59.0
Net Volume Ref. Meter, Vr	6.897	11.894	14.873
Net Volume DGM, Vd	6.598	11.671	14.862
Gas Meter y Factor =	1.031	1.012	0.998
Gas Meter y Factor Deviation (from avg.)	0.017	0.002	0.016
Orifice dH@	N/A	N/A	N/A
Orifice dH@ Deviation (from avg.)	N/A	N/A	N/A

where:

- 1. Deviation = |Average value for all runs current run value|
- ** 2. $y = [Vr \ x \ (y \ factor \ (ref)) \ x \ (Pb + (Pr/13.6)) \ x \ (Td + 460)] / [Vd \ x \ (Pb + (Pd/13.6)) \ x \ (Tr + 460)]$
- ** 3. $dH@=0.0317 \times Pd / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

The uncertainty of measurement is ±0.14 ft³/min. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

^{*} Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272, or NIST traceable laboratory

^{**} Equations come from EPA Method 5

Certificate of Calibration

Certificate Number: 543402

JJ Calibrations, Inc. 7007 SE Lake Rd

Portland, OR 97267-2105 Phone 503.786.3005

FAX 503.786.2994

Omni-Test Laboratories 13327 NE Airport Way Portland, OR 97230

PO: OTL-13-031 Order Date: 09/27/2013 Calibration

Authorized By: N/A

Calibrated on: 10/09/2013 *Recommended Due: 10/09/2018

Environment: 20 °C 41 % RH

As Received: Other - See Remarks As Returned: Within Tolerance

Action Taken: Calibrated

Technician: 34

Property #: OMNI-00283A

User: N/A Department: N/A

Make: Troemner Inc

Model: 1mg-100g (Class F)

Serial #: 47883

Description: Mass Set, 21 Pc.

Procedure: DCN 500901 Accuracy: Class F

* Any number of factors may cause the calibration item to drift out of calibration before the recommended interval has expired

Changed set from a Class 4 to a Class F per Jeremy Clark.

Received missing 1g weight.

Refer to attachment for measurement results.

Standards Used

Std ID	Manufa <u>cturer</u>	<u>Model</u>	Nomenclature	Due Date	Trace ID
432A	Sartorius	C-44	Microbalance 5.1g	03/11/2014	517747
479A	Sartorius	MC210S	Scale, 210g	02/22/2014	517755
503A	Rice Lake	1mg-200g (Class O)	Mass Set	12/07/2013	517746
723A	Rice Lake	1mg-200g (Class O)	Mass Set	09/05/2014	540048

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Reviewer

3 Issued 10/11/2013

Rev # 14

Page 1 of 1 Certificate: 543402 116 of 258

JJ Calibrations, Inc.

Manufacturer: Troemner Inc.

Model: 1mg-100g (Class F)

Nomenclature: Mass Set, 21 Pc. Serial: 47883

Certificate #: 543402

Date: 09Oct2013

Technician: 34

Calibration Interval: 60 Months

Parameter		Nominal	JJ Standard	UUT	UUT ± Limit	Uncertainty ±
Mass Verification						
Data in mg		1	0.996	1.048	0.100	0.0115
	dot	2	2.002	1.973	0.120	0.0115
		2	2.002	2.048	0.120	0.0115
		5	4.996	5.033	0.170	0.0115
		10	10.000	10.053	0.210	0.0115
	dot	20	19.999	19.966	0.260	0.0115
		20	19.999	20.069	0.260	0.0115
		50	49.998	50.018	0.350	0.0115
		100	99.998	100.144	0.430	0.0115
	dot	200	199.999	200.045	0.540	0.0115
		200	199.999	199.967	0.540	0.0115
		500	499.996	500.334	0.720	0.0115
Data in grams		1		Missing		
	dot	2	2.000000	1.999888	0.0011	0.0000394
		2	2.000000	2.000335	0.0011	0.0000394
		5	5.000002	4.999996	0.0015	0.0000395
		10	9.99998	9.99984	0.0020	0.0000580
	dot	20	19.99999	20.00100	0.0040	0.0000855
		20	19.99999	20.00079	0.0040	0.0000855
		50	49.99997	49.99949	0.0100	0.0001390
		100	99.99999	99.99802	0.0200	0.0002900
		1		1		İ
		1 ***				
	<u> </u>					
		1				
			."			
					ļ	

					ļ	

Certificate of Calibration

Certificate Number: 543402

Omni-Test Laboratories 13327 NE Airport Way JJ Calibrations, Inc. 7007 SE Lake Rd Portland, OR 97267-2105 Phone 503.786.3005 FAX 503.786.2994

Calibration

PO: OTL-13-031 Order Date: 09/27/2013

Authorized By: N/A

*Recommended Due: 10/09/2013 *Recommended Due: 10/09/2018 Environment: 20 °C 41 % RH

As Received: Other - See Remarks
As Returned: Within Tolerance

Action Taken: Calibrated

Technician: 34

Property #: OMNI-00283A

User: N/A
Department: N/A

Portland, OR 97230

Make: Troemner Inc

Model: 1mg-100g (Class F)

Serial #: 47883

Description: Mass Set, 21 Pc.

Procedure: DCN 500901 Accuracy: Class F

Remarks: * Any number of factors may cause the calibration item to drift out of calibration before the recommended interval has expired

Changed set from a Class 4 to a Class F per Jeremy Clark.

Received missing 1g weight.

Refer to attachment for measurement results.

Standards Used

Std ID	<u>Manufacturer</u>	Model	Nomenclature	Due Date	Trace ID
432A	Sartorius	C-44	Microbalance 5.1g	03/11/2014	
479A	Sartorius	MC210S	Scale, 210g	02/22/2014	517755
503A	Rice Lake	1mg-200g (Class O)	Mass Set	12/07/2013	517746
723A	Rice Lake	1mg-200g (Class O)	Mass Set	09/05/2014	540048

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc.

JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

118 of 258

3 Issued 10/11/2013

Rev #14

Page 1 of 1

Certificate: 543402

Reviewer

JJ Calibrations, Inc.

Manufacturer: Troemner Inc.

Model: 1mg-100g (Class F)

Nomenclature: Mass Set, 21 Pc. Serial: 47883

Certificate #: 543402

Date: 09Oct2013

Technician: 34 Calibration Interval: 60 Months

Douguester		Ni mana ina mai	JJ	11117	UUT	Uncertainty
Parameter Mass Verification		Nominal	Standard	UUT	土 Limit	
Data in mg		1 1	0.996	1.048	0.100	0.0135
Data in mg	dot	2	2.002			0.0115
	uot	2		1.973	0.120	0.0115
	- 	5	2.002	2.048	0.120	0.0115
		10	4.996	5.033	0.170	0.0115
	dot.	20	10.000	10.053	0.210	0.0115
	dot	20	19.999	19.966	0.260	0.0115
			19.999	20.069	0.260	0.0115
		50	49.998	50.018	0.350	0.0115
	al a b	100	99.998	100.144	0.430	0.0115
	dot	200	199.999	200.045	0.540	0.0115
		200	199.999	199.967	0.540	0.0115
Data:		500	499.996	500.334	0.720	0.0115
Data in grams		1 1	0.000000	Missing	0.000	
	dot	2	2.000000	1.999888	0.0011	0.0000394
		2	2.000000	2.000335	0.0011	0.0000394
		5	5.000002	4.999996	0.0015	0.0000395
		10	9.99998	9.99984	0.0020	0.0000580
	dot	20	19.99999	20.00100	0.0040	0.0000855
		20	19.99999	20.00079	0.0040	0.0000855
		50	49.99997	49.99949	0.0100	0.0001390
		100	99.99999	99.99802	0.0200	0.0002900
			B)			
		1				
			. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		ļļ				

Model: 31M-ACC-C Hearth and Home Technologies 1445 North Highway Colville, WA 99114

Example Calculations

Equations and Sample Calculations – ASTM E2780 & E2515

Manufacturer:	Hearth & Home
Model:	3100 ACC
Run:	1
Category:	

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

M_{Sdb} – Weight of test fuel spacers, dry basis, kg

M_{Cdb}- Weight of test fuel crib, excluding nails and spacers, dry basis, kg

D_{Cdb} - Density of fuel crib, excluding spacers and nails, dry basis, lbs/ft³

M_{FTAdb} - Total weight of fuel crib excluding nails, dry basis, kg

BR – Dry burn rate, kg/hr

V_s - Average gas velocity in the dilution tunnel, ft/sec

Q_{sd} – Average gas flow rate in dilution tunnel, dscf/hr

 $V_{m(std)}$ – Volume of gas sampled, corrected to dry standard conditions, dscf

m_n – Total particulate matter collected, mg

C_s - Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dscf

E_T - Total particulate emissions, g

PR - Proportional rate variation

PM_R – Particulate emissions for test run, g/hr

PM_F – Particulate emission factor for test run, g/dry kg of fuel burned

OMNI-Test Laboratories, Inc.

M_{Sdb} - Weight of test fuel spacers, dry basis, kg

ASTM E2780 equation (1)

$$M_{Sdb} = (M_{Swb})(100/(100 + FM_S))$$

Where,

FM_S = average fuel moisture of test fuel spacers, % dry basis

M_{Swb} = weight of test fuel spacers, wet basis, kg

Sample Calculation:

$$FM_S = 16.2 \%$$

$$M_{Swb} = 1.7$$
 lbs

0.4536 = Conversion factor from lbs to kg

$$M_{Sdb} = [(1.7 \times 0.4536) (100/(100 + 16.2))]$$

$$M_{Sdb} = 0.7 \text{ kg}$$

M_{Cdb} - Weight of test fuel crib, excluding nails and spacers, dry basis, kg ASTM E2780 equation (2)

$$M_{Cdb} = \Sigma[(M_{CPnwb})(100/(100 + FM_{CPn}))]$$

Where,

M_{CPnwb} = weight of each test fuel piece n in fuel crib, excluding nails and spacers, wet basis, kg

FM_{CPn} = Average fuel moisture of test fuel n in fuel crib, % dry basis

Sample Calculation (test fuel piece 1):

$$MC_{Pnwb} = 1.5$$
 $FM_{CPn} = 19.4$

$$= 1.5 (100/(100+19.4))$$

$$= 1.3 lbs$$

Total crib weight, excluding spacer 9.09 lbs

 $M_{Cdb} = 4.12 \text{ kg}$

D_{Cdb} - Density of fuel crib, excluding spacers and nails, dry basis, lbs/ft³ ASTM E2780 equation (3)

$$D_{Cdb} = M_{Cdb}/V_C$$

Where,

Sample calculation:

$$V_C = 564 \text{ in}^3$$

1728 = conversion from in
3
 to ft 3

$$D_{Cdb} = 9.09 / 564 * 1728$$

OMNI-Test Laboratories, Inc.

$\mathbf{M}_{\text{FTAdb}}$ - Total weight of fuel crib excluding nails, dry basis, kg ASTM E2780 equation (4)

$$M_{FTAdb} = M_{Sdb} + M_{Cdb}$$

Sample calculation:

$$M_{FTAdb} = 0.66 + 4.12$$

BR - dry burn rate, kg/hr

ASTM E2780 equation (5)

BR =
$$\frac{60 \text{ M}_{\text{FTAdb}}}{\theta}$$

Where,

 θ = Total length of test run, min

Sample Calculation:

$$\begin{array}{lll} M_{Bdb} & = & 4.78 & & kg \\ \theta & = & 290 & & min \end{array}$$

BR =
$$\frac{60 \times 4.78}{290}$$

$$BR = 0.99 kg/hr$$

V_s – Average gas velocity in the dilution tunnel, ft/sec ASTM E2515 equations (9)

$$V_{s} = F_{P} \times K_{p} \times C_{p} \times (\sqrt{\Delta P})_{avg} \times \sqrt{\frac{T_{s(avg)}}{P_{s} \times M_{s}}}$$

Where:

 F_p = Adjustment factor for center of tunnel pitot tube placement, $F_p = \frac{V_{strav}}{V_{scent}}$, ASTM E2515 Equation (1)

V_{scent} = Dilution tunnel velocity calculated after the multi-point pitot traverse at the center, ft/sec

V_{strav} = Dilution tunnel velocity calculated after the multi-point pitot traverse, ft/sec

 k_p = Pitot tube constant, 85.49

 C_p = Pitot tube coefficient: 0.99, unitless

 ΔP^* = Velocity pressure in the dilution tunnel, in H₂O

 T_s = Absolute average gas temperature in the dilution tunnel, $^{\circ}R$; ($^{\circ}R = ^{\circ}F + 460$)

 P_s = Absolute average gas static pressure in dilution tunnel, = P_{bar} + P_g , in Hg

P_{bar} = Barometric pressure at test site, in. Hg

 P_{g} = Static pressure of tunnel, in. $H_{2}0$; (in Hg = in $H_{2}0/13.6$)

M_s = **The dilution tunnel wet molecular weight; M_s = 28.78 assuming a dry weight of 29 lb/lb-mole

Sample calculation:

$$Fp = \frac{13.07}{13.62} = 0.960$$

$$V_s = 0.960 \times 85.49 \times 0.99 \times 0.200 \times \left(\frac{79.7 + 460}{28.94 + \frac{-0.52}{13.6}} \right)_{X} 28.78 \right)^{1/2}$$

$$V_s = 13.08 \text{ ft/s}$$

*The ASTM test standard mistakenly has the square root of the average delta p instead of the average of the square root of delta p. The current EPA Method 2 is also incorrect. This was verified by Mike Toney at EPA.

**The ASTM test standard mistakenly identifies Ms as the dry molecular weight. It should be the wet molecular weight as indicated in EPA Method 2.

Q_{sd} - Average gas flow rate in dilution tunnel, dscf/hr

ASTM E2515 equation (3)

$$Q_{sd} = 3600 \times (1 - B_{ws}) \times v_s \times A \times \frac{T_{std}}{T_{s(avg)}} \times \frac{P_s}{P_{std}}$$

Where:

3600 = Conversion from seconds to hours (ASTM method uses 60 to convert in minutes)

B_{ws} = Water vapor in gas stream, proportion by volume; assume 2%

A = Cross sectional area of dilution tunnel, ft^2

 T_{std} = Standard absolute temperature, 528 $^{\circ}$ R

 P_s = Absolute average gas static pressure in dilution tunnel, = P_{bar} + P_g , in Hg

 $T_{s(avq)}$ = Absolute average gas temperature in the dilution tunnel, °R; (°R = °F + 460)

P_{std} = Standard absolute pressure, 29.92 in Hg

Sample calculation:

Q_{sd} =
$$3600 \times (1 - 0.02) \times 13.08 \times 0.196 \times \frac{28.9 + \frac{-0.52}{13.6}}{79.7 + 460} \times \frac{28.9 + \frac{-0.52}{13.6}}{29.92}$$

 $Q_{sd} = 8565.8 \, dscf/hr$

V_{m(std)} – Volume of Gas Sampled Corrected to Dry Standard Conditions, dscf ASTM E2515 equation (6)

$$V_{m(std)} = K_1 V_m Y \frac{P_{bar} + \left(\frac{\Delta H}{13.6}\right)}{T_m}$$

Where:

17.64 ° R/in. Hg K_1

Volume of gas sample measured at the dry gas meter, dcf

Υ Dry gas meter calibration factor, dimensionless

 P_{bar} Barometric pressure at the testing site, in. Ha

ΔН Average pressure differential across the orifice meter, in. H₂O

Absolute average dry gas meter temperature, °R T_{m}

Sample Calculation:

Using equation for Train 1:

sing equation for Train 1:
$$V_{m(std)} = 17.64 \times 32.757 \times 1.001 \times \frac{(28.94 + \frac{1.08}{13.6})}{(79.4 + 460)}$$

 $V_{m(std)} = 31.120$ dscf

Using equation for Train 2:
$$V_{m(std)} = 17.64 \times 38.291 \times 0.993 \times \frac{(28.94 + \frac{1.14}{13.6})}{(79.6 + 460)}$$

 $V_{m(std)} = 36.083$ dscf

Using equation for ambient train:
$$V_{m(std)} = 17.64 \quad x \quad 56.59 \quad x \quad 1.014 \quad x \quad \underbrace{ \left(\begin{array}{c} 28.94 \\ \hline 13.6 \end{array} \right)}_{\qquad \qquad \qquad }$$

 $V_{m(std)} = 54.642$ dscf

m_n - Total Particulate Matter Collected, mg

ASTM E2515 Equation (12)

$$m_n = m_p + m_f + m_g$$

Where:

 m_p = mass of particulate matter from probe, mg

 m_f = mass of particulate matter from filters, mg

m_g = mass of particulate matter from filter seals, mg

Sample Calculation:

Using equation for Train 1 (first hour):

$$m_0 = 0.0 + 4.3 + 0.0$$

$$m_n = 4.3 \text{ mg}$$

Using equation for Train 1 (post-first hour):

$$m_n = 1.1 + 1.3 + 0.2$$

$$m_n = 2.6 \text{ mg}$$

Train 1 aggregate:

$$m_n = 4.3 + 2.6$$

$$m_n = 6.9 \text{ mg}$$

Using equation for Train 2:

$$m_n = 0.5 + 7.6 + 0.3$$

$$m_n = 8.4 \text{ mg}$$

C_s - Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dsc ASTM E2515 equation (13)

$$C_s = K_2 \times \frac{m_n}{V_{m(std)}}$$

Where:

 K_2 = Constant, 0.001 g/mg

m_n = Total mass of particulate matter collected in the sampling train, mg

 $V_{m(std)}$ = Volume of gas sampled corrected to dry standard conditions, dscf

Sample calculation:

For Train 1:

$$C_s = 0.001 \text{ x} \frac{6.9}{31.12}$$

$$C_s = 0.00022$$
 g/dscf

For Train 2

$$C_s = 0.001 \text{ x} \quad \frac{8.4}{36.08}$$

$$C_s = 0.00023$$
 g/dscf

For Ambient Train

$$C_r = 0.001 \times \frac{0.1}{54.64}$$

$$C_r = 0.000002 \text{ g/dscf}$$

E_T - Total Particulate Emissions, g

ASTM E2515 equation (15)

$$E_T = (c_s - c_r) \times Q_{std} \times \theta$$

Where:

C_s = Concentration of particulate matter in tunnel gas, g/dscf

C_r = Concentration particulate matter room air, g/dscf

Q_{std} = Average dilution tunnel gas flow rate, dscf/hr

 θ = Total time of test run, minutes

Sample calculation:

For Train 1

$$E_T = (0.000222 - 0.000002) x 8565.8 x 290 /60$$

 $E_T = 9.10 g$

For Train 2

$$E_T = (0.000233 - 0.000002) x 8565.8 x 290 /60$$

 $E_T = 9.56 g$

Average

$$E = 9.33$$
 g

Total emission values shall not differ by more than 7.5% from the total average emissions

7.5% of the average = 0.70

Train 1 difference = 0.23

Train 2 difference = 0.23

PR - Proportional Rate Variation

ASTM E2515 equation (16)

$$PR = \left[\frac{\theta \times V_{mi} \times V_{s} \times T_{m} \times T_{si}}{\theta_{i} \times V_{m} \times V_{si} \times T_{mi} \times T_{s}} \right] \times 100$$

Where:

 θ = Total sampling time, min

 θ_i = Length of recording interval, min

 V_{mi} = Volume of gas sample measured by the dry gas meter during the "ith" time interval, dcf

 V_m = Volume of gas sample as measured by dry gas meter, dcf

 V_{si} = Average gas velocity in the dilution tunnel during the "ith" time interval, ft/sec

 V_s = Average gas velocity in the dilution tunnel, ft/sec

T_{mi} = Absolute average dry gas meter temperature during the "ith" time interval, °R

T_m = Absolute average dry gas meter temperature, °R

 T_{si} = Absolute average gas temperature in the dilution tunnel during the "ith" time interval, ${}^{\circ}R$

 T_s = Absolute average gas temperature in the dilution tunnel, ${}^{o}R$

Sample calculation (for the first 1 minute interval of Train 1):

PM_R – Particulate emissions for test run, g/hr

ASTM E2780 equation (6)

$$PM_R = 60 (E_T/\theta)$$

Where,

 E_T = Total particulate emissions, grams

 θ = Total length of full integrated test run, min

Sample Calculation:

$$E_T$$
 (Dual train average) = 9.33 g

 $\theta = 290 \text{ min}$

$$PM_R = 60 x (9.33 / 290)$$

$$PM_R = 1.93$$
 g/hr

PM_F – Particulate emission factor for test run, g/dry kg of fuel burned ASTM E2780 equation (7)

$$PM_F = E_T/M_{FTAdb}$$

Sample Calculation:

$$E_T$$
 (Dual train average) = 9.33 g

$$M_{Bdb} = 4.78 \text{ kg}$$

$$PM_F = 9.33 / 4.78$$

$$PM_F = 1.95$$
 g/kg

Section 5

Test Instruction Recommendations, Labeling, & Owner's Manual

Test Instruction Recommendations: 3100 ACC / Discovery II

<u>Created on/by</u>: 02/07/17; C. Winslow Howe – HHT Design Engineer

<u>Purpose</u>: To create repeatability in test protocol for coal bed establishment and loading of the stove.

Coal Bed establishment (Low, Medium Low, Medium High)

Wood Load: 2 loads of 2x4's. Each load will consist of 4 pieces at 14" and 5 pieces at 12". The second wood load should be loaded when the first load has burnt down to around 2 pounds.

Air Settings: Unit air control should be fully open with the ACC locked open.

Fan Settings: Unit fan should be on high for the duration of the coal bed establishment

Coal Bed establishment (High)

Wood Load: 1 Load of 2x4's, Load will consist of 4 Pieces at 14" and 6 Pieces at 12"

Air Settings: Unit air control should be fully open with ACC locked open.

Fan Settings: Unit fan should be on high for the duration of the coal bed establishment

Pre-Burn (Low)

When the unit weight is .2lb below the top end of the coal bed for the test load, pre-burn should be started.

Pre-burn load: 3 pieces of 2x4's at 8" in length

Air Controls: Primary air control should be closed all the way to its mechanical stop. ACC should be fully closed as well.

Fan Settings: Unit fan should be on high for the duration of pre-burn.

Coal Bed Break Down: Coal Bed should be broken down at 50 minutes into pre-burn. Rake coals forward to create a slope parallel to the unit's baffle. Clear out coals directly in front of the primary air outlet.

Test Burn (Low)

Loading: When the test load is loaded into the stove the back of the bottom pieces Should be snugged down with the front of the bottom pieces just rested on the coals. This should place the front bottom of the wood about .25" above the lip of the Primary air outlet. The front of the wood should be even with the lip of the primary air outlet. The left side of the wood load should be about .25" off the firebrick on the left side of the unit. Clear out coals in front of primary air outlet.

Air Controls: Before opening the door to load set primary air control to full open and activate the ACC. After loading and the door is shut reactivate the ACC. At 5 minutes set the primary air control all the way down to the mechanical stop.

Pre-Burn (Medium-Low)

When the unit weight is .1lb above the top end of the coal bed for the test load, pre-burn should be started.

Pre-burn load: 3 pieces of 2x4's at 8" in length

Air Controls: primary air control should be set so that the base of the opening triangle is 1".

Fan Settings: Unit fan should be on high for the duration of pre-burn.

Coal Bed Break Down: Coal Bed should be broken down at 50 minutes into pre-burn. Rake coals forward to create a slope parallel to the unit's baffle. Clear out coals directly in front of the primary air outlet.

Test Burn (Medium-Low)

Loading: When the test load is loaded into the stove the back of the bottom pieces Should be snugged down with the front of the bottom pieces just rested on the coals. This should place the front bottom of the wood about .25" above the lip of the Primary air outlet. The front of the wood should be even with the lip of the primary air outlet. The left side of the wood load should be about .25" off the firebrick on the left side of the unit. Clear out coals in front of primary air outlet.

Air Controls: Before opening the door to load activate the ACC. After loading and the door is shut reactivate the ACC. Primary air control should not be changed from its pre-burn setting.

Pre-Burn (Medium-High)

When the unit weight is .1lb above the top end of the coal bed for the test load, pre-burn should be started.

Pre-burn load: 3 pieces of 2x4's at 8" in length

Air Controls: Primary air control should be set so that the base of the opening triangle is 1.29". ACC should be fully closed as well.

Fan Settings: Unit fan should be on high for the duration of pre-burn.

Coal Bed Break Down: Coal Bed should be broken down at 50 minutes into pre-burn. Rake coals forward to create a slope parallel to the unit's baffle. Clear out coals directly in front of the primary air outlet.

Test Burn (Medium-High)

Loading: When the test load is loaded into the stove the back of the bottom pieces Should be snugged down with the front of the bottom pieces just rested on the coals. This should place the front bottom of the wood about .25" above the lip of the Primary air outlet. The front of the wood should be even with the lip of the primary air outlet. The left side of the wood load should be about .25" off the firebrick on the left side of the unit. Clear out coals in front of primary air outlet.

Air Controls: Before opening the door to load set primary air control to full open and activate the ACC. After loading and the door is shut reactivate the ACC. At 5 minutes set the primary air control to its pre-burn setting.

Pre-Burn (High)

When the unit weight is at 2.0lb, pre-burn should be started.

Pre-burn load: 4 pieces of 2x4's at 14" in length and 6 pieces of 2x4's at 12" in length

Air Controls: Primary air control should be opened all the way to the mechanical stop and the ACC should be locked open

Fan Settings: Unit fan should be on high for the duration of pre-burn.

Coal Bed Break Down: Coal Bed should be broken down when unit weight is at the top of the coal bed. Rake coals forward to create a slope parallel to the unit's baffle. Clear out coals directly in front of the primary air outlet.

Test Burn (High)

Loading: Left side of the wood should be .25" off the left side of the brick. The load should be placed snuggly into the coals as far back as possible.

Air Controls: Air controls do not change from their pre-burn setting.

Ę **PART NAME** 7033-354 | SERIAL RATING PLATE PART NUMBER ITEM

CAUTION: HOT WHILE IN OPERATION DO NOT TOUCH, KEEP CHILDREN AND CLOTHING AWAY. CONTACT MAY CAUSE SKIN BURNS. KEEP FURNISHINGS AND THER COMBUSTIBLE MATERIAL FAR AWAY FROM THE APPLIANCE. SEE NAMEPLATE AND INSTRUCTIONS. ATTENTION: CHAUD LORS DE L'OPÉRATION. NE PAS TOUCHER. GARDEZ LES ENFANTS ET LES VÉTEMENTS LOIN DE L'ESPACE DÉSIGNÉ DE L'INSTALLATION. LE CONTACT PEUT CAUSER DES DES DESIGNÉ DE L'INSTALLATION. LE CONTACT PEUT CAUSER DES DES DES DES DE L'APPAREIL. VOIR L'ÉTIQUETTE ET LES INSTRUCTIONS.

LISTED ROOMAPP, UNICE, SOLID FUEL TYPE, ALSO FOR USE IN MOBLE HOMES, (UM) 84 HUD. "For Use with Solid Wood Foel Only" APPAREL DE CHAUFFAGE DE PECE, DE TYPE DE COMBLISTIBLE SOLUDE, POUR USAGE DANS LES LIMSONS MOBLES, (UM) 84 HUD. "Pour Usage Avec Bols Solide Soulement"

PREVENT HOUSE FIRES! PRÉVENTION DES FEUX DE MAISON

BARCODE LABEL

Serial No. / N° de série

મ

TESTED TO:/ TESTÉ À : ASTM E2515, UL 1482-11 (R2015), ULC S627-00.

VENT SPECIFICATIONS:/SPÉCIFICATIONS DE LAVENTILATION:

3100 ACC Series-C

OUADRA-FIRE

SNOE WILL SX not 16 obsets (150mm) desirate minimals N NSS black or build steel connector pipe, with a listed fedory-built IL (100HT Class Y* chimage, satisfact fedory-built IL (100HT Class Y* chimage, satisfact fedory-built IL (100HT Class Y* chimage, and the set of the set NSTALLATON: 90° ELBOW OFF TOP OF STOVE THROUGH BACKWALL I NSTALLATON: 90° DU COURBINE AU DESSUS DE HAUT DU POÈLE A TRAVERS LE MUR ARRÈRE SANCHE 15 (38) 8 5 (216) 25 (635) 13 (330) 8 (203) 20 (5) 31M-AGC-C DOUBLE WALL PIPE / CONDUIT DU MUR DOUBLE Discovery-I-C 31M-ACC-C DOUBLE WALL PIPE / CONDUIT DU MUR DOUBLE Discovery-II-C 31M-ACC-C Discovery-II-C 31M-ACC-C chimney frough a combustive wall or calling and nazamun offests inspect and dean chimney (requelty - Uheler Cherein Chorder of the Cherein before further of the Cherein of Cherein of Cherein Cherein (Cherein Cherein Cherei Tappani. Ne joss faire passes le ill électrique au dessos ou en dessous de l'appanii. DANIGRE, 1 y a risque de decharge électrique. Décrimètes, l'électrique de la prise desonitat anni les voirs. Berindeza de la resultant aneu use vite orientante de 5 mil disponité dez vite bournissou. Viètere pas le leu Bélissoz le lou de bos dechemant sur l'âte. Ne pas autroitates, d'appareil de chalatique ou le typa de deminieñ ougésent, una surchaite. Chétat gippaniel pas autroitates la jorde de chalatique de l'appareil et signateil. while units in use. The structural integrity of the mobile home floor, ceiling and walls must be maintained. The appliance needs be a groperly grounded to the farme of the mobile home. Components required for mobile home installation: Outside Air/Rit. Peri Number OAK-ACC, Refer to manufacturer's instructions and took codes for procadions required to passing losque lappaal est en usage. La studura intigrate du plantier, du platinde I des muss de la maison mobile, dui être mathanna intaràe. L'appareil de chauffage dui déte finé à la charpente de la maison mobile. Las composants requis pour l'insablatin des maisons mobiles, Assamblege deir extérieur. Numéro de Placa O.M.-A.C. Référez vous aux instructions ou dationari et des cobes locaus pour les piécaulions requises pour pesser une cheminée à traves un mur ou un plandro ombustables, et along mestions manurais la speaza et industria de anime les pautants. Caso partieres conditions, is par tou par en dessus s'accumile applierant le pas commeder est aguara al la mordinamide sevant una placapa Hearlant Optionnel, Place BeK-ADC, Pussance Beartique ITS WC, 1,2 Mmp, 63 Mr. E. Expignoz le il électique de Intell and use only in accordance with mendedura's installed and opening in settled contact contact local building or fine officials bout estrictions and resident inspections in your area. Do not obstud the space breesin appliance. WIRANING For Mobile Homes: Do not install in a skepting room. An ouiside combustion art inferruits to provided and runnessitized. Open only to add fuel to the fire. I histalez et utilisez en accord avec les instructions d'installation et d'opération du fabricant. Contacts to luvesude is construction ou it bringed des incenties au suit des esprichtes de fest impactions of installation and was unter soft an oversinge. No pass days set is grape and dessous eld regional AMS - pour Les Matsons Mobiles : No pass and affect des unes dates and external entre la set and an external entre la contract in Inspara dessous de combined and est entre la regional entre de combined and external entre la com

BACKWALL/SIDEWALL NUR ARRIÈRE/MUR DE CÔTE

12 (305) 12 (305)

48 (1220) 48 (1220)

20 (508)

8 (203) 8 (203)

16 (406) 16 (406)

28.5 (724) 28.5 (724)

11.75 (298)

18.25 (464) 18.25 (464)

NSTALATION: FULL VERTICAL OR HORZONTAL WITH MINIMUM 2 FTVERTICAL OF STOVE TOP INSTALATION; ENTÉREMENT VERTICALE OU HORZONTALE AVEC 6 F F H G B H H B SINGLE MALL PRE, CONDUIT OU MARS SIRPLE.

0

ıψı

9 (229)

48 (1220) 48 (1220)

18.5 (470) 18.5 (470)

13 (330)

25 (635) 25 (635)

6.5 (165) 6.5 (165)

13.5 (343) 13.5 (343)

CORNER INSTALLATION

9 (229)

48 (1220) 48 (1220)

18.5 (470) 18.5 (470)

6.5 (165) 6.5 (165)

8.5 (216) 8.5 (216)

20.5 (521) 20.5 (521)

4.5 (114) 4.5 (114)

11 (279) 11 (279)

12 (305) 12 (305)

48 (1220) 48 (1220)

20 (508) 20 (508)

NRTALIDON, EQDPE. Size no finicides (ESCam) demané fele DOIR E. PIWL si rinciland connecting per with ILI 0311T* l'add factorybull Gass W. Arimen ou ranscarry ofname, (Machè Horn mach se appapat with a spat areasts) Manimur della forto sella be in men Be all dines (EST mill) and it is before dearners. In EST MAZILLATON, ELCONE, Six pouces (Foxosa) (ESTIM) to demande lebt all rise bits buy as a scarciforners (IND HT* "Veed Desso saries constituity"). Per femilie and remembre de membre de sella six six buy as a conscription (LID HT* "Asset Desso saries constituity"). Per femilie au une membre de membre de sella six buy as a conscription (LID HT* "Asset Desso saries constituity"). Per femilie au une membre de membre de sella six buy as a conscription (LID HT* "Asset Desso saries constituity").

48 (1220) 48 (1220)

¥ ¥

¥ ¥

14.5 (368)

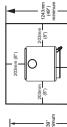
26.5 (673) 26.5 (673)

8.25 (210) 8.25 (210)

14.75 (375) 14.75 (375)

48 poucas (12/9mm) et less dégagements en adoiver référencés. <u>DOUBLE WALL PIPE / CONDUIT DU MUR DOUBLE</u> Discovery-I-C 31M-ACC-C

*In Canada must compty with Standard CANULC-S629-M87 for the 650°C Factory-built chimney. I *Au Canada doit conformer a CANULLC-S629-M87 la norme pour 650°C cheminée bâtit ea


SEE PIPE MANUFACTURERS CLEARANCES - NOT TESTED / VOIR LE FABRICANT POUR LES ESPACES LIBRES DES CONDUIT - PAS TESTÉ

FLOOR PROTECTION:

7.75

PROTECTION DU PLANCHER:

nch (§ 5mm) dépaissou, de matériel inombatible ou quivalent (sebutint) du Assaule à la pipa et le drafige à l'andri, au couté et la rairie comme indiqué sur le diagname sulvant Exegution : Les protections inombatibles du pieroire divient s'étante en dessous du coutit de deminé la sexquireatiées saveu ne la coutit de deminé la sexquireatiées saveu ne ventilation à l'horizontale et s'élendre de 2 inches (51 mm) Le protecteur de plancher doit être d'un minimum de 3/8 le chaque côté. non-combustible material or equivalent, extending beneath extend beneath the flue pipe when installed with horizontal venting and extend 2 inches (51 mm) beyond each side. Floor protector must be a 3/8 (9.5mm) inch min. thickness, neater and to frontisides/rear as indicated on the diagram below. Exception: Non-combustible floor protections mus

CANADA

90° OF TOP
UP & OUT CEIL ING CLEARANCE
ESPACE LIBRE DU DESSUS DE
L'APPAREIL AU PLAFOND AVEC
90° DE COURBURE

□ã P. P. STOVE TO CEILING CLEARANCE ESPACE LIBRE DU POÈLE AU PLAFOND _ Bar eg 🔲 Jan.

ALCOVE SIDE VIEW / VUE DE CÔTÉ DE L'ALCÔVE

ALCOVE TOP VIEW / VUE DU HAUT DE L'ALCÔVE Θ

> HEARTH'SHOME technologies 352 Mountain House Road, Halifax, PA 17032 www.quadrafire.com Manufactured by:

Made in U.S.A. of US and imported parts. / Fabriqué aux États-Unis-d'Amérique par des pièces d'origine américaine et pièces importées.

DISCOVERY-II-C DO NOT REMOVE THIS LABEL / NE PAS ENLEVER L'ÉTIQUETTE D^{ig} 31M-Acc-c 2022 2021 \square

Certified to comply with 2020 particulate emission standards using crib wood at 1.9 GHR EPA Method 28 and 5G.

U.S. ENVIRONMENTAL PROTECTION AGENCY

≥ □

g 🔲

This wood heater needs periodic inspection and regair for proper operation. Consult the owner's manual for further information. It is against federal regulations to operate this wood header in a manner inconsistent with the operating instructions in the owner's manual.

7033-354D

1. MATERIAL: NON-ANODIZED ALUMINUM 0.020 THICK <u>1.</u> 2. BACKGROUND: SILVER 3. COPY: BLACK & RFD

4. ADHESIVE: 3M #468 PERMANENT ACRYLIC 5. TEMPERATURE RATING: -50 F TO 350 F

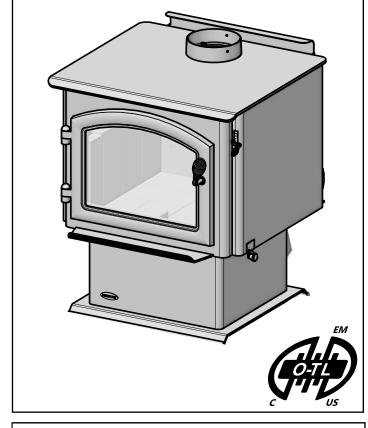
UNLESS OTHERWISE SPECIFIED DIMS ARE INCHES[MM] & :TOLERANCES ARE: (2) PLACE DEC : ± 0.03 (3) PLACE DEC : ± 0.005 ANGLE: ± 2° FRACTION: ± 1/16	SERIAL LABEL. 3100 ACC-C SERIES (9-1/2"X7-3/4")	SCALE: , MATERAL: CEE NOTE		1 OF 1 7033-354	
	PART NAME: SERIAL		THE STATE OF THE S	THIS PRINT IS CHECKED AND CONTROLLED BY THE ENGINEERING SHEET: DEPARTMENTS OF HEARTH & HOME TECHNOLOGIES INC.	
	HEARTH&HOME				
WCI	MCI	WCI	MCI	ВУ	
02/26/20	06/05/19	10/10/17	02/13/17	DATE	
62623	91024	80598	P16061	#00H	
NEW STANDIZE UPDATE	JPDATE DATE RANGE	AADE PRINT TO SCALE & ADD PART NAME W/DIMENSIONS	REATION	REVISIONS	
NEW STA	JPDAT	MADE	CREA		
D NEW STA	C UPDAT	B MADE	A CREA	REV	

Owner's Manual

Operation & Care

INSTALLER: Leave this manual with party responsible for use and operation.

OWNER: Retain this manual for future reference.


Contact your dealer with question on installation, operation, or service.

NOTICE: DO NOT DISCARD THIS MANUAL

QUADRA-FIRE

3100 MILLENNIUM WOOD
APPLIANCE
AUTOMATIC COMBUSTION
CONTROL (ACC)

MODEL NUMBER: 31M-ACC-C

Installation and service of this appliance should be performed by qualified personnel. Hearth & Home Technologies recommends HHT Factory Trained or NFI certified professionals.

WARNING

If the information in these instructions is not followed exactly, a fire could result causing property damage, personal injury, or death.

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
- <u>Do not over-fire</u> If appliance or chimney connector glows, you are over-firing. Over-firing will void your warranty.
- Comply with all minimum clearances to combustibles as specified.

Failure to comply may cause house fire.

WARNING

HOT SURFACES!

Glass and other surfaces are hot during operation AND cool down.

Hot glass and appliance will cause burns.

- Do not touch glass until it is cooled
- Use leather gloves when reloading fuel
- NEVER allow children to touch glass
- Keep children away
- CAREFULLY SUPERVISE children in same room as appliance.
- Alert children and adults to hazards of high temperatures
- High temperatures may ignite clothing or other flammable materials.
- Keep clothing, furniture, draperies and other flammable materials away.

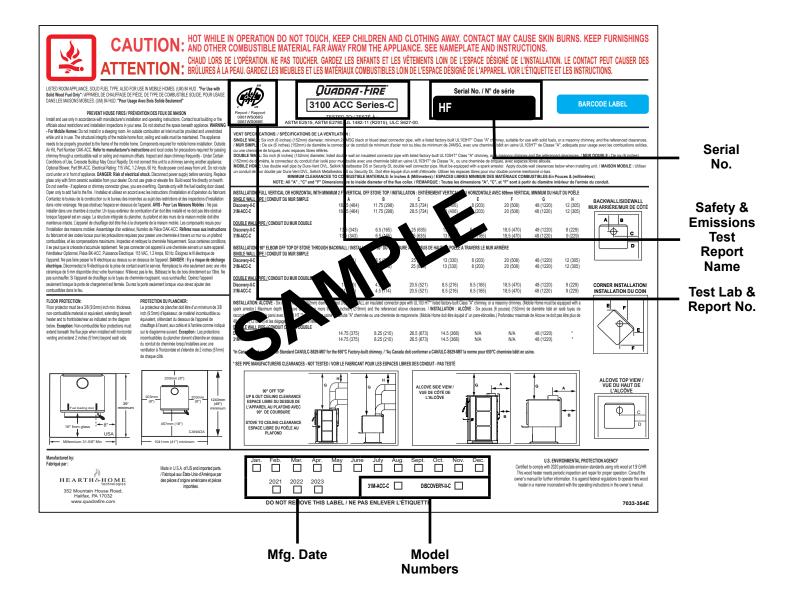
WARNING

Fire Risk.

For use with solid wood fuel only. Other fuels may over-fire and generate poisonous gases (i.e. carbon monoxide).

NOTE: To obtain a French translation of this manual, please contact your dealer or visit www.quadrafire.com

REMARQUE : Pour obtenir une traduction française de ce manuel, s'il vous plaît contacter votre revendeur ou visitez www.guadrafire.com



and Welcome to the Quadra-Fire Family!

NOTE: Clearances may only be reduced by means approved by the regulatory authority having jurisdiction

A. Sample of Serial Number / Safety Label

LOCATION: Back of appliance

Safety Alert Key:

- **DANGER!** Indicates a hazardous situation which, if not avoided <u>will</u> result in death or serious injury. **WARNING!** Indicates a hazardous situation which, if not avoided <u>could</u> result in death or serious injury.
- **CAUTION!** Indicates a hazardous situation which, if not avoided, <u>could</u> result in minor or moderate injury.
- **NOTICE:** Indicates practices which may cause damage to the appliance or to property.

TABLE OF CONTENTS

A. Sample of Serial Number / Safety Label 2	3 Maintenance and Service
B. Warranty Policy	A. Quick Reference Maintenance Guide
A. Appliance Safety Certification	4 Troubleshooting Guide
→ B. Appliance Emissions Certification	5 Service Part Replacement
C. BTU & Efficiency Specifications. 7 D. Glass Specifications. 8 E. Mobile Home Approved 8 F. Sleeping Room 8 G. California - Prop65. 8	A. Glass 22 B. Firebrick 22 C. Snap Disc 23 D. Door Handle Assembly 23
2 Operating Instructions	E. Baffle Removal
A. Over-Firing Your Appliance 9 B. Wood Selection & Storage 9 C. Burning Process 9 D. Air Controls 10 E. Using Burn Rate Air Control & ACC System 11 F. Burn Rates and Operating Efficiency 12 G. Building A Fire 13 H. Blower Operating Instructions 14 I. Opacity (Smoke) 14 J. Clear Space 15	6 Reference Materials A. Service and Maintenance Log
K. Negative Pressure	→ = Contains updated information
L. I requeritiy Asked Questions 10	

Quadra-Fire is a registered trademark of Hearth & Home Technologies.

B. Warranty Policy

Hearth & Home Technologies LLC LIMITED LIFETIME WARRANTY

Hearth & Home Technologies LLC ("HHT") extends the following warranty for HHT gas, wood, pellet and electric hearth appliances (each a "Product" and collectively, the "Product(s)") and certain component parts set forth in the table below ("Component Part(s)") that are purchased from a HHT authorized dealer or distributor.

WARRANTY COVERAGE:

HHT warrants that the Products and their Component Parts will be free from defects in materials and workmanship for the applicable period of Warranty coverage set forth in the table below ("Warranty Period"). If a Product or Component Parts are found to be defective in materials or workmanship during the applicable Warranty Period, HHT will, at its option, repair the applicable Component Part(s), replace the applicable Component Part(s), or refund the purchase price of the applicable Product(s). The maximum amount recoverable under this Warranty is limited to the purchase price of the Product. This Warranty is transferable from the original purchaser to subsequent owners, but the Warranty Period will not be extended in duration or expanded in coverage for any such transfer. This Warranty is subject to conditions, exclusions, and limitations as described below.

WARRANTY PERIOD:

Warranty coverage begins at the date of installation. In the case of new home constructions, Warranty coverage begins on the date of first occupancy of the dwelling or six months after the sale of the Product(s) by an independent, authorized HHT dealer or distributor, whichever occurs earlier. However, the Warranty coverage shall commence no later than 24 months following the date of Product shipment from HHT, regardless of the installation or occupancy date.

The term "Lifetime" in the table below is defined as: 20 years from the beginning date of warranty coverage for gas appliances, and 10 years from the beginning date of warranty coverage for wood and pellet appliances. These time periods reflect the minimum expected useful lives of the designated Component Parts under normal operating conditions.

Warranty	Period	HHT Manufactured Applian			HHT Manufactured Appliances and Venting			
Component Parts	Labor	Gas	Pellet	Wood	Electric	Venting	Component Parts Covered by this Warranty	
1 Ye	ear	х	х	х		x	All parts including handles, external enameled components and other material except as covered by Warranty Conditions, Warranty Exclusions, and Warranty Limitations listed	
2 Ye	ars				x		All parts except as covered by Warranty Conditions, Warranty Exclusions, and Warranty Limitations listed	
			x	x			Igniters, Auger Motors, Electronic Components, and Glass	
2 years		х					Electrical components limited to modules, remotes/wall switches, valves, pilots, blowers, junction boxes, wire harnesses, transformers and lights (excluding light bulbs)	
		Х		Х			Molded Refractory Panels, Glass Liners	
3 уеа	ars		х				Firepots, burnpots, mechanical feeders/auger assemblies	
5 years	1 year	х					Vent Free Burners, Vent Free Logs	
o years	. you.		X	X			Castings, Medallions and Baffles	
6 years	3 years			х			Catalysts	
7 years	3 years		х	х			Manifold tubes, HHT Chimney and Terminations	
10 years	1 year	х					Burners, logs and refractory	
Limited Lifetime	3 years	х	х	х			Firebox and heat exchanger, FlexBurn® System (engine, inner cover, access cover and fireback)	
1 Year	None	х	х	х	х	х	All purchased replacement parts	

4021-645L 10/20 Page 1 of 2

WARRANTY CONDITIONS:

- Because HHT cannot control the quality of any Products sold by unauthorized sellers, this Warranty only covers Products that are
 purchased through an HHT authorized dealer or distributor unless otherwise prohibited by law; a list of HHT authorized dealers
 is available on the HHT branded websites.
- This Warranty is only valid while the applicable Product remains at the site of original installation.
- This Warranty is only valid in the country in which the HHT authorized dealer or distributor that sold the applicable Product is authorized to sell applicable Product.
- Contact your installing distributor or dealer for Warranty service. If the installing dealer or distributor is unable to provide necessary parts, contact the nearest HHT authorized dealer or supplier. Additional service fees may apply if you are seeking Warranty service from a dealer other than the dealer from whom you originally purchased the applicable Product.
- No HHT consumer should bear cost of warranty service or costs incurred while servicing warranty claims (i.e., travel, gas, or mileage) when the service is performed within the terms of this Warranty. Check with your dealer or distributor in advance for any costs to you when arranging a warranty call. Travel and shipping charges for parts are not covered by this Warranty.

WARRANTY EXCLUSIONS:

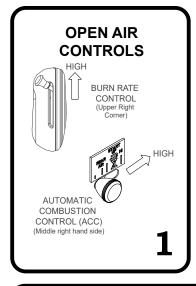
This Warranty does not cover the following:

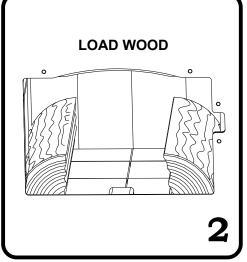
- Changes in surface finishes as a result of normal use. As a heating appliance, some changes in color of interior and exterior surface finishes may occur. This is not a flaw and is not covered under the Warranty.
- Damage to printed, plated, or enameled surfaces caused by fingerprints, accidents, misuse, scratches, melted items or other external sources and residues left on the plated surfaces from the use of abrasive cleaners or polishes.
- Repair or replacement of parts that are subject to normal wear and tear during the Warranty Period are not covered. These parts include: paint, wood and pellet gaskets, firebricks, grates, flame guides, batteries and the discoloration of glass.
- Minor expansion, contraction, or movement of certain parts causing noise. These conditions are normal and complaints related to this noise are not covered by this Warranty.
- Damages resulting from: (1) failure to install, operate, or maintain the applicable Product in accordance with the installation instructions, operating instructions, and listing agent identification label furnished with the applicable Product; (2) failure to install the applicable Product in accordance with local building codes; (3) shipping or improper handling; (4) improper operation, abuse, misuse, continued operation with damaged, corroded or failed components, accident, or improperly/incorrectly performed repairs; (5) environmental conditions, inadequate ventilation, negative pressure, or drafting caused by tightly sealed constructions, insufficient make-up air supply, or handling devices such as exhaust fans or forced air furnaces or other such causes; (6) use of fuels other than those specified in the operation instructions; (7) installation or use of components not supplied with the applicable Product or any other components not expressly authorized and approved by HHT; (8) modification of the appliance not expressly authorized and approved by HHT in writing; and/or (9) interruptions or fluctuations of electrical power supply to the applicable Product.
- Non-HHT venting components, hearth connections or other accessories used in conjunction with the applicable Product.
- Any part of a pre-existing fireplace system in which an insert or a decorative gas applicable Product is installed.
- HHT's obligation under this Warranty does not extend to the Product's capability to heat the desired space. Information is provided to assist the consumer and the dealer in selecting the proper Product for the application. Consideration must be given to the Product location and configuration, environmental conditions, insulation and air tightness of the structure.

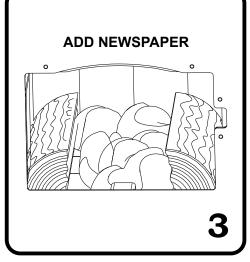
This warranty is void if:

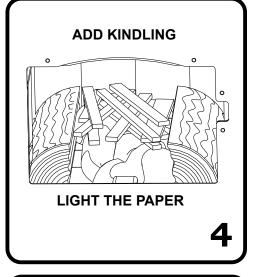
- The applicable Product has been over-fired, operated in atmospheres contaminated by chlorine, fluorine, or other damaging chemicals. Over-firing can be identified by, but not limited to, warped plates or tubes, deformation/warping of interior cast iron structure or components, rust colored cast iron, bubbling, cracking and discoloration of steel or enamel finishes.
- The applicable Product is subjected to prolonged periods of dampness or condensation.
- There is any damage to the applicable Product due to water or weather damage which is the result of, but not limited to, improper chimney or venting installation.

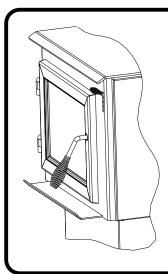
LIMITATIONS OF REMEDIES AND LIABILITY:


• EXCEPT TO THE EXTENT PROVIDED BY LAW, HHT MAKES NO EXPRESS WARRANTIES OTHER THAN THE WARRANTY SPECIFIED HEREIN. The owner's exclusive remedy and HHT's sole obligation under this Warranty or in contract, tort or otherwise, shall be limited to replacement of the Component Part(s), repair of the Component Part(s), or refund of the original purchase price of the applicable Product(s), as specified above; provided, however, that (i) if HHT is unable to provide replacement of the Component Part(s) and repair of the Component Part(s) is not commercially practicable or cannot be timely made, or (ii) the customer is willing to accept a refund of the purchase price of the applicable Product(s), HHT may discharge all such obligations by refunding the purchase price of the applicable Product. In no event will HHT be liable for any incidental or consequential damages caused by defects in the applicable Product. Some States do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This Warranty gives you specific legal rights and you may also have other rights which vary from State to State. THE DURATION OF ANY IMPLIED WARRANTY IS LIMITED TO DURATION OF THE EXPRESSED WARRANTY SPECIFIED ABOVE FOR THE APPLICABLE PRODUCT. Some States do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you.

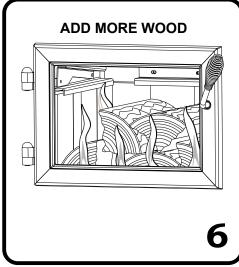

4021-645L 10/20 Page 2 of 2

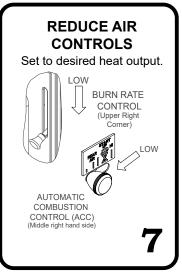

C. Quick Start Guide


NOTE: These are generic drawings and may not represent your specific model.


ITEMS NEEDED FOR FIRST FIRE:10 Pieces of Newspaper, 10-20 Pieces of Dry Kindling and Few Pieces of Dry Split Wood.

Warning! Risk of Fire.


Close and securely latch the door after the fire has started, and after refueling, to prevent:


- Spillage of smoke, flame and carbon monoxide
- Spillage of sparks, coals, and logsOver firing

DO NOT leave the appliance unattended with the door open.

Starting a fire may not require an open door for draft. The air control should supply adequate draft.

5

The appliance is ready for normal operation.

Listing and Code Approvals

A. Appliance Safety Certification

Model Number:	3100 Millennium Wood Appliance
Laboratory:	OMNI Test Laboratories, Inc.
Report Number:	0061WS066S
Туре:	Listed Room Appliance, Solid Fuel Type
Standard:	UL1482-11 (R2015) and ULC S627-00 and (UM) 84-HUD, Mobile Home Approved.

B. Appliance Emissions Certification

Model Number:	31M-ACC-C	
Laboratory:	OMNI Test Laboratories, Inc.	
Report Number:	0061WS066E	
Standard: ASTM E2515, ASTM E2780		
Can be found at:		
www.quadrafire.com/about-us/epa-certification		

The 31M-ACC-C is Certified to comply with 2020 crib wood particulate emission standards.

This wood appliance needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood appliance in a manner inconsistent with operating instructions in this manual.

NOTE: This installation must conform with local codes. In the absence of local codes you must comply with (UM) 84-HUD and NFPA211 in the U.S.A. and CAN/CSA-B365 Installation Codes in Canada.

C. BTU & Efficiency Specifications

EPA Certification Number:	Number: 86-17
EPA Certified Emissions:	1.9 grams per hour
*LHV Tested Efficiency:	78.3%
**HHV Tested Efficiency:	72.5%
***EPA BTU Output:	13,900 to 29,100 / hr
****Peak BTU/Hour Output:	51,000
Vent Size:	6 inches
Firebox Size:	1.89 cubic feet
Recommended Log Length:	16 inches
Fuel:	Seasoned Cord Wood (20% moisture)

- * Weighted average LHV (Low Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. LHV assumes the moisture is already in a vapor state so there is no loss in energy to vaporize.
- ** Weighted average HHV (High Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. HHV includes the energy required to vaporize the water in the fuel.
- *** A range of BTU outputs calculated using HHV Efficiency and the burn rates from the EPA tests, using Douglas Fir dimensional lumber.
- **** A peak BTU out of the appliance calculated using the maximum first hour burn rate from the High EPA Test and BTU content of seasoned cordwood (8600) times the efficiency.

D. Glass Specifications

This appliance is equipped with 5mm ceramic glass. Replace glass only with 5mm ceramic glass. Please contact your dealer for replacement glass.

E. Mobile Home Approved

- This appliance is approved for mobile home installations when not installed in a sleeping room and when an outside combustion air inlet is provided.
- The structural integrity of the mobile home floor, ceiling, and walls must be maintained.
- The appliance must be properly grounded to the frame
 of the mobile home with #8 copper ground wire, and
 chimney must be listed to UL103 HT or a listed UL1777 full length six inch (152mm) diameter liner must
 be used.
- Outside Air Kit, part OAK-ACC must be installed in a mobile home installation.

F. Sleeping Room

When installed in a sleeping room it is recommended that a smoke and/or CO alarm be installed in the bedroom. The size of the room must be at least 50ft³ per 1,000 Btu/hr stove input, if the stove exceeds the room size, outside air must be installed.

G. California - Prop65

WARNING

This product and the fuels used to operate this product (wood), and the products of combustion of such fuels, can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, and carbon monoxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to: WWW.P65Warnings.ca.gov

WARNING

Fire Risk.

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage.

For assistance or additional information, consult a qualified installer, service agency or your dealer.

Hearth & Home Technologies WILL NOT warranty stoves that exhibit evidence of over-firing. Evidence of over-firing includes, but is not limited to:

- Warped air tube
- Deteriorated refractory brick retainers
- Deteriorated baffle and other interior components

NOTE: Hearth & Home Technologies, manufacturer of this appliance, reserves the right to alter its products, their specifications and/or price without notice.

Operating Instructions

A. Over-Firing Your Appliance

WARNING

Fire Risk. Do not over-fire.

Over-firing may ignite creosote or will damage the appliance and chimney.

To prevent over-firing your appliance, <u>DO NOT</u>:

- Use flammable liquids
- Overload with wood
- Burn trash or large amounts of scrap lumber
- Permit too much air to the fire

Visit <u>www.quadrafire.com/shopping-tools/videos</u> to view product and use & care videos.

1. Symptoms of Over-Firing

Symptoms of over-firing may include one or more of the following:

- Chimney connector or appliance glowing
- Roaring, rumbling noises
- Loud cracking or banging sounds
- Metal warping
- Chimney fire

2. What To Do if Your Appliance is Over-Firing

- Immediately close the door and air controls to reduce air supply to the fire.
- If you suspect a chimney fire, call the fire department and evacuate your house.
- Contact your local chimney professional and have your appliance and appliance pipe inspected for any damage.
- Do not use your appliance until the chimney professional informs you it is safe to do so.

Hearth & Home Technologies WILL NOT warranty appliances that exhibit evidence of over-firing. Evidence of over-firing includes, but is not limited to:

- Warped air tube
- Deteriorated refractory brick retainers
- Deteriorated baffle and other interior components

B. Wood Selection & Storage

Burn only dry seasoned wood. Store wood under cover, out of the rain and snow. Dry and well-seasoned wood will not only minimize the chance of creosote formation, but will give you the most efficient fire. Even dry wood contains at least 15% moisture by weight, and should be burned hot enough to keep the chimney hot for as long as it takes to dry the wood out - about one hour. It is a waste of energy to burn unseasoned wood of any kind.

Dead wood lying on the forest floor should be considered wet, and requires full seasoning time. Standing dead wood can be considered to be about 2/3 seasoned. To tell if wood is dry enough to burn, check the ends of the logs. If there are cracks radiating in all directions from the center, it is dry. If your wood sizzles in the fire, even though the surface is dry, it may not be fully cured.

Splitting wood before it is stored reduces drying time. Wood should be stacked so that both ends of each piece are exposed to air, since more drying occurs through the cut ends than the sides. This is true even with wood that has been split. Store wood under cover, such as in a shed, or covered with a tarp, plastic, tar paper, sheets of scrap plywood, etc., as uncovered wood can absorb water from rain or snow, delaying the seasoning process.

C. Burning Process

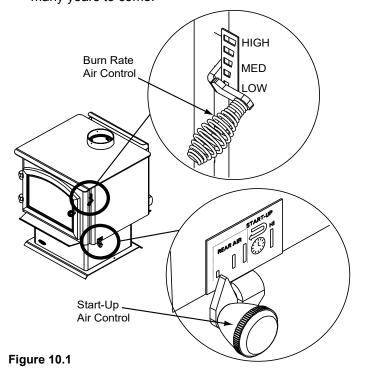
In recent years there has been an increasing concern about air quality. Much of the blame for poor air quality has been placed on the burning of wood for home heating. In order to improve the situation, we at Quadra-Fire have developed cleaner-burning wood appliances that surpass the requirements for emissions established by our governing agencies. These wood appliances, like any other appliances, must be properly operated in order to insure that they perform the way they are designed to perform. Improper operation can turn most any wood appliance into a smoldering environmental hazard.

1. Kindling or First Stage

It helps to know a little about the actual process of burning in order to understand what goes on inside a appliance. The first stage of burning is called the kindling stage. In this stage, the wood is heated to a temperature high enough to evaporate the moisture which is present in all wood. The wood will reach the boiling point of water (212°F) and will not get any hotter until the water is evaporated. This process takes heat from the coals and tends to cool the appliance.

Fire requires three things to burn - fuel, air and heat. So, if heat is robbed from the appliance during the drying stage, the new load of wood has reduced the chances for a good clean burn. For this reason, it is always best to burn dry, seasoned firewood. When the wood isn't dry, you must open the air controls and burn at a high burn setting for a longer time to start it burning. The heat generated from the fire should be warming your home and establishing the flue draft, not evaporating the moisture out of wet, unseasoned wood, resulting in wasted heat.

2. Second Stage


The next stage of burning, the secondary stage, is the period when the wood gives off flammable gases which burn above the fuel with bright flames. During this stage of burning it is very important that the flames be maintained and not allowed to go out. This will ensure the cleanest possible fire. If the flames tend to go out, it is set too low for your burning conditions. The air control located at the upper right hand corner is used to adjust for burn rates. This is called the <u>Burn Rate Air Control</u> (Figure 10.1).

3. Final Stage

The final stage of burning is the charcoal stage. This occurs when the flammable gases have been mostly burned and only charcoal remains. This is a naturally clean portion of the burn. The coals burn with hot blue flames.

It is very important to reload your appliance while enough lively hot coals remain in order to provide the amount of heat needed to dry and rekindle the next load of wood. It is best to open the Burn Rate Air and Start-Up Air Controls before reloading. This livens up the coal bed and reduces excessive emissions (opacity/smoke). Open door slowly so that ash or smoke does not exit appliance through opening. You should also break up any large chunks and distribute the coals so that the new wood is laid on hot coals.

Air quality is important to all of us, and if we choose to use wood to heat our homes we should do so responsibly. To do this we need to learn to burn our appliances in the cleanest way possible. Doing this will allow us to continue using our wood appliances for many years to come.

D. Air Controls

Users will need to find their preferred setting between high and low based on desired heat output, installation configuration, and fuel type.

1. Burn Rate Air Control

This air supply enters at the upper front of the firebox, near the top of the glass door. This preheated air supplies the necessary fresh oxygen to mix with the unburned gases, helping to create second, third and fourth combustions. This air is regulated by the Burn Rate Air Control. When the control is moved all the way up it is on the High setting and when moved all the way down it is on the Low setting (Figure 10.1).

2. Automatic Combustion Control System (ACC) To engage the Automatic Combustion Control (ACC) timer system push the lever towards the back of the

appliance to the "HI" position, then pull forwards towards the front of the appliance until the knob stops. The timer will slowly close in about 25 minutes. Use this feature when reloading fuel or if you want more air supplied to the fire (Figures 10.1 and Figure 10.2).

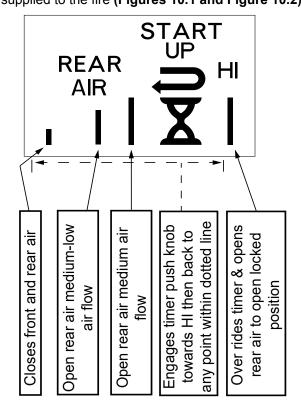
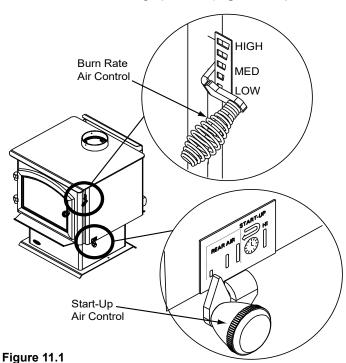


Figure 10.2

E. Using Burn Rate Air Control & ACC System

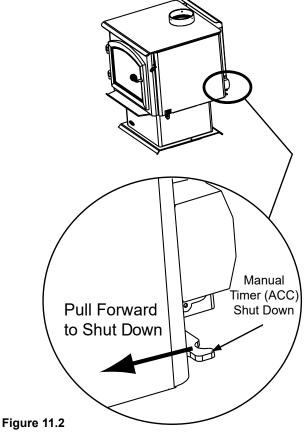

CAUTION

Injury Risk.

Gloves recommended

Start up and Reloading Fuel

Open both Burn Rate Air Control and ACC systems fully. To do this with the Burn Rate Air Controls push spring handle up to high. For the ACC timer system push knob towards back of appliance until the knob is located under the high position (Figure 11.1).



Maximize Heat with The ACC System

To maximize heat output with the ACC timer System or also known as high burn push the ACC Air Control lever towards the back of the appliance and leave. This combined with having the main burn rate control lever pushed up will deliver the most amount of air needed to achieve the highest amount of heat output (Figure 11.1).

3. Manual Timer Over-Ride

If you need to shut the ACC system off before it goes through the cycle of shutting itself off; 25 minutes, reach towards the back of the appliance on the right side and pull the lever towards the front of the appliance (Figure 11.2).

F. Burn Rates and Operating Efficiency For maximum operating efficiency

This wood appliance has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this wood appliance in a manner inconsistent with operating instructions in this manual.

Burn dry, well-seasoned wood.

Burn Rates

1. Low burn setting:

- Burn Rate Air Control spring handle up to high position for 5 minutes.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops (Figure 10.1 on page 10).
- At that point close the Burn Rate Air Control by moving the spring handle to the low setting.

2. Medium low burn setting:

- Burn Rate Air Control spring handle up to high position for 5 minutes.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops.
- At that point move the Burn Rate Air Control spring handle to 1/8"-1/2" from the low setting.

3. Medium high burn setting:

- Burn Rate Air Control spring handle up to high position.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops.
- At that point move the Burn Rate Air Control spring handle to 1/2" – high.

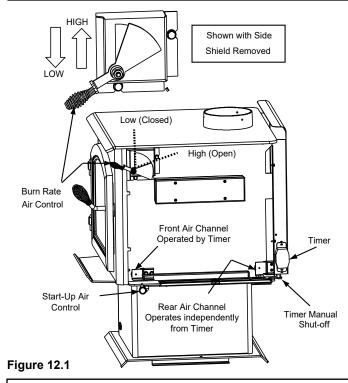
4. High burn setting:

- Burn Rate Air Control spring handle up to high position
- Also activate ACC timer system knob pushed back to the "HI" position.

NOTE: If using the optional blower, for burn rate settings 1-3, the blower shall be off for the first 30 minutes and then be operated in the high position at 30 minutes. For high burn setting, blower may continue to be on full after the loading of the fuel.

NOTE: The above information is provided as a guideline only. Altitude and other circumstances may require control adjustments to achieve the desired burn rates.

NOTE: Operate appliance on High Burn 45 minutes a day to help keep flue/chimney clean.


WARNING

M

Risk of Fire.

When set on High Burn Rate and over-riding the Automatic Combustion Control system an over fire situation can occur and may result in a chimney fire.

Over firing will void the appliance warranty.

After activating the timer (ACC), if the control is placed within the rear air section on the label it will allow rear air to enter the firebox. This will not interfere with the timer gradually closing the front air channel in 25 minutes. If control is set on "HI" it over-rides the timer (ACC).

G. Building A Fire

Before lighting your first fire in the appliance:

NOTE: The special high temperature paint that your appliance is finished with will cure as your appliance heats. You will notice an odor and perhaps see some vapor rise from the appliance surface; this is normal. We recommend that you open a window until the odor dissipates and paint is cured.

- 1. Confirm the baffle is correctly positioned. It should be even with the front tube and resting on all tubes (Figure 13.1 and Figure 13.2).
- 2. Remove all labels from glass and inside of appliance.

There are many ways to build a fire. The basic principle is to light easily-ignitable tinder or paper, which ignites the fast burning kindling, which in turn ignites the slow-burning firewood. Here is one method that works well:

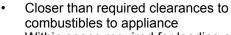
- 1. Open the Burn Rate Air and ACC Controls fully (Refer to **Start-Up Guide** on page 6).
- 2. Place several wads of crushed paper on the firebox floor. Heating the flue with slightly crumpled newspaper before adding kindling keeps smoke to a minimum.
- 3. Lay small dry sticks of kindling on top of the paper.
- Make sure that no matches or other combustibles are in the immediate area of the appliance. Be sure the room is adequately ventilated and the flue unobstructed.
- 5. Light the paper in the appliance. NEVER light or rekindle fire with kerosene, gasoline, or charcoal lighter fluid; the results can be fatal.
- 6. Once the kindling is burning quickly, add several full-length logs 3 inches (76mm) or 4 inches (102mm) in diameter. Be careful not to smother the fire. Stack the pieces of wood carefully; near enough to keep each other hot, but far enough away from each other to allow adequate air flow between them.
- Set the Burn Rate Air Control and activate the ACC timer system.
- 8. When ready to reload, It is best to fully open both the Burn Rate Air and Start-up Air Controls **before reloading**. This livens up the coal bed and reduces excessive emissions (opacity/smoke). Open door slowly so that ash or smoke does not exit appliance through opening. Large logs burn slowly, holding a fire longer. Small logs burn fast and hot, giving quick heat.
- As long as there are hot coals, repeating steps 6 through 8 will maintain a continuous fire.

WARNING

Fire Risk.

- Do not leave the fire unattended when the door is unlatched or when using the
- Unstable firewood could fall out of the firebox creating a fire hazard to your home.

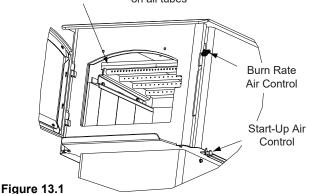
NOTE:


- Build fire on brick firebox floor.
- Do NOT use grates, andirons or other methods to support fuel. It will adversely affect emissions.

WARNING

Fire Risk.

Do NOT store wood:



 Within space required for loading or ash removal.

Do NOT operate appliance:

- With appliance door open.
- · With ash removal system door open.

Baffle Board even with front tube & resting on all tubes

Ceramic Blanket on Top

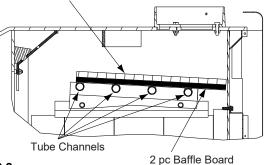


Figure 13.2

WARNING

Fire Risk.

- Do NOT burn wet or green wood.
- Store wood in dry location.
- Stack wood so both ends are exposed to air.

Wet, unseasoned wood can cause accumulation of creosote.

H. Blower Operating Instructions

NOTE: If your Quadra-Fire wood appliance is equipped with an optional blower, you should follow these quidelines:

1. Initial (cold) start-up and all Burn Settings

The blower can be plugged in and turned on right away. The blower fan is turned on and off by a snap disc. When your appliance has reached a certain temperature the blower will turn on and when your appliance has cooled down to a certain temperature it will turn off. Switch on blower control must be set to auto for this feature to work.

2. The blower is equipped with a speed control. Adjust the fan speed by turning the speed control clockwise to "Low" or counterclockwise to "High".

3. Snap Disc Location

If you find the blower coming on and off at undesirable temperatures, relocate the snap disc to another location in the designated zone on the back of the appliance (**Figure 14.1**). There is a manual override switch to deactivate the snap disc, if necessary (**Figure 14.2**).

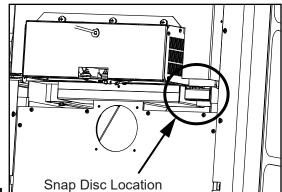
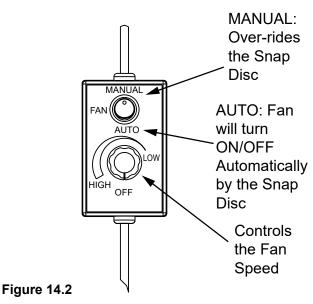



Figure 14.1

I. Opacity (Smoke)

This is the measure of how cleanly your appliance is burning. Opacity is measured in percent; 100% opacity is when an object is totally obscured by the smoke column from a chimney, and 0% opacity means that no smoke column can be seen. As you become familiar with your appliance, you should periodically check the opacity. This will allow you to know how to burn as nearly smoke-free as possible (goal of 0% opacity).

WARNING

Fire Risk.

- DO NOT BURN GARBAGE OR FLAMMABLE FLUIDS SUCH AS GASOLINE. NAPHTHA OR ENGINE OIL.
- Do NOT burn treated wood or wood with salt (driftwood).
- May generate carbon monoxide if burn material other than wood.

May result in illness or possible death.

WARNING

Fire Risk.

Keep combustible materials, gasoline and other flammable vapors and liquids clear of appliance.

- Do NOT store flammable materials in the appliance's vicinity.
- DO NOT USE GASOLINE, LANTERN FUEL, KEROSENE, CHARCOAL LIGHTER FLUID OR SIMILAR LIQUIDS TO START OR "FRESHEN UP" A FIRE IN THIS Appliance.
- Keep all such liquids well away from the appliance while it is in use.
- Combustible materials may ignite.

CAUTION

When burning your first fire, you will experience smoke and odor from the appliance resulting from the curing of paint and burning off of any oils remaining from manufacturing.

OPEN WINDOWS DURING INITIAL BURN TO DISSIPATE SMOKE AND ODORS!

- Odors may be irritating to sensitive individuals.
- Smoke detectors may activate.

J. Clear Space

NOTE: Do NOT place combustible objects within 4 ft (1.2m) of the front of appliance (**Figure 15.1**).

Mantel:

Avoid placing candles and other heat-sensitive objects on mantel or hearth. Heat may damage these objects.

WARNING

Do NOT place combustible objects in front of the appliance. High temperatures may ignite clothing, furniture or draperies.

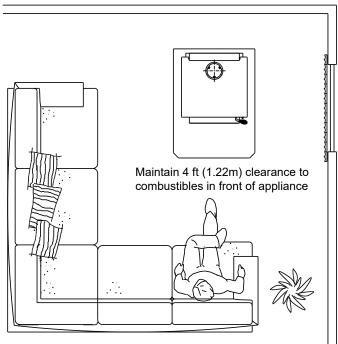


Figure 15.1

K. Negative Pressure

WARNING

Asphyxiation Risk.

- Negative pressure can cause spillage of combustion fumes, soot and carbon monoxide.
- Appliance needs to draft properly for safety.

Negative pressure results from the imbalance of air available for the appliance to operate properly. It can be strongest in lower levels of the house.

Causes include:

- Exhaust fans (kitchen, bath, etc.)
- Range hoods
- Combustion air requirements for furnaces, water appliances and other combustion appliances
- Clothes dryers
- Location of return-air vents to furnace or air conditioning
- Imbalances of the HVAC air handling system
- Upper level air leaks such as:
 - Recessed lighting
 - Attic hatch
 - Duct leaks

To minimize the effects of negative air pressure:

- Install the outside air kit with the intake facing prevailing winds during the heating season
- Ensure adequate outdoor air for all combustion appliances and exhaust equipment
- Ensure furnace and air conditioning return vents are not located in the immediate vicinity of the appliance
- Avoid installing the appliance near doors, walkways or small isolated spaces
- Recessed lighting should be a "sealed can" design
- Attic hatches weather stripped or sealed
- Attic mounted duct work and air handler joints and seams taped or sealed

L. Frequently Asked Questions

ISSUES	SOLUTIONS
Odor from appliance	When first operated, this appliance may release an odor for the first several hours. This is caused by the curing of the paint and the burning off of any oils remaining from manufacturing.
Metallic noise	Noise is caused by metal expanding and contracting as it heats up and cools down, similar to the sound produced by a furnace or heating duct. This noise does not affect the operation or longevity of the appliance.
Whirring sound	If the optional blower has been installed, the blower produces a whirring sound which increases in volume as the speed is increased.

CONTACT YOUR DEALER for additional information regarding operation and troubleshooting. Visit www.quadrafire.com to find a dealer.

Table 16.1

WARNING

Fire Risk.

- DO NOT BURN GARBAGE OR FLAMMABLE FLUIDS SUCH AS GASOLINE, NAPHTHA OR ENGINE OIL.
- Do NOT burn treated wood or wood with salt (driftwood).
- May generate carbon monoxide if burn material other than wood.

May result in illness or possible death.

WARNING

Fire Risk.

Keep combustible materials, gasoline and other flammable vapors and liquids clear of appliance.

- Do NOT store flammable materials in the appliance's vicinity.
 DO NOT USE GASOLINE, LANTERN
- DO NOT USE GASOLINE, LANTERN FUEL, KEROSENE, CHARCOAL LIGHTER FLUID OR SIMILAR LIQUIDS TO START OR "FRESHEN UP" A FIRE IN THIS APPLIANCE.
- Keep all such liquids well away from the appliance while it is in use.
- Combustible materials may ignite.

A. Quick Reference Maintenance Guide

When properly maintained, your fireplace will give you many years of trouble-free service. Contact your dealer to answer questions regarding proper operation, troubleshooting and service for your appliance. Visit www.quadrafire.com/owner-resources to view basic troubleshooting, FAQs, use & care videos.

CAUTION

Allow the appliance to completely cool down before performing any cleaning or maintenance. Start the first inspection after the first 2 months of use, or if performance changes, and adjust your schedule accordingly. Maintenance is required for safe operation and must be performed to maintain your warranty.

	FREQUENCY	TASK
Baffle & Blanket Baffle Retainer Bracket Ceramic Blanket Back of Firebox Bark of Firebox Baffle Board	MONTHLY or after every one (1) cord of wood	Baffle and blanket placement is critical to heat output, efficiency and overall life of the appliance. Make sure the baffle is pushed all of the way to the back of the firebox and the blanket is laying flat. Inspect baffle for cracks.
Optional Blower	YEARLY or after every four (4) cords of wood	Vacuum the blower impellers.
Chimney System	EVERY TWO MONTHS or after every four (4) cords of wood	The chimney and chimney cap must be inspected for soot and creosote every two months during the burn season or more frequency if chimney exceeds or is under 14-16 ft (4.3m-4.8m) measured from bottom of appliance. This will prevent pipe blockage, poor draft, and chimney fires. Always burn dry wood to help prevent cap blockage and creosote build-up.
Firebrick & Ash Removal	WEEKLY or after every 25 loads of wood	Ashes must be cool before you can dispose of the ashes in a non-combustible container. Firebrick is designed to protect your firebox. After ashes are removed, inspect the firebrick and replace firebricks that are crumbling, cracked or broken.
Door & Glass Assemblies	WEEKLY or after every 25 loads of wood	Keep door and glass gasket in good shape to maintain good burn. To test: place a dollar bill between the appliance and door and then shut the door. If you can pull the dollar out, remove one washer from door handle behind latch cam and try again. If you can still pull it out, replace the door gasket. Check the glass frame for loose screws to prevent air leakage. Check glass for cracks.
Door Handles	WEEKLY or after every 25 loads of wood	Check the door latch for proper adjustment. This is very important especially after the door rope has formed to the appliance face. Check door handle for smooth cam operation.

Table 17.1

These are generic drawings and may not represent your model.

B. General Maintenance

- 1. Creosote (Chimney) Cleaning
- Frequency: Every 2 months during heating season or as recommended by a certified chimney sweep; more frequently if chimney exceeds or is under 14-16 ft. (measured from bottom of appliance)
- By: Certified Chimney Sweep

Remove all ash from the firebox and extinguish all hot embers before disposal. Allow the appliance to cool completely. Disconnect flue pipe or remove baffle and ceramic blanket from appliance before cleaning chimney. Otherwise residue can pile up on top of the baffle and ceramic blanket and the appliance will not work properly. (See **Baffle Removal** on page 24). Close the door tightly. The creosote or soot should be removed with a brush specifically designed for the type of chimney in use. Clean out fallen ashes from the firebox.

It is also recommended that before each heating season the entire system be professionally inspected, cleaned and repaired if necessary.

Inspection:

Inspect the system at the appliance connection and at the chimney top. Cooler surfaces tend to build creosote deposits quicker, so it is important to check the chimney from the top as well as from the bottom.

Formation and Need For Removal:

When wood is burned slowly, it produces tar and other organic vapors which combine with expelled moisture to form creosote.

The creosote vapors condense in the relatively cool chimney flue of a newly-started or a slow-burning fire. As a result, creosote residue accumulates on the flue lining. When ignited, this creosote creates an extremely hot fire which may damage the chimney or even destroy the house.

The chimney connector and chimney should be inspected once every 2 months during the heating season to determine if a creosote or soot buildup has occurred. If creosote or soot has accumulated, it should be removed to reduce the risk of a chimney fire.

WARNING

Fire Risk.

Prevent creosote buildup.

- Inspect chimney connector and chimney once every two months during heating season.
- Remove creosote to reduce risk of chimney fire.
- Ignited creosote is extremely HOT.

WARNING

Fire Risk.

Do not use chimney cleaners or flame colorants in your appliance. Will corrode chimney pipe.

2. Disposal of Ashes

- Frequency: When ash is within 1-3/4 in. (44mm) of firebox lip
- By: Homeowner

WARNING

Fire Risk.

Ashes could contain hot embers.

Ashes should be placed in a metal container with a tight fitting lid. The closed container of ashes should be placed on a non-combustible floor or on the ground, well away from all combustible materials, pending final disposal. If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have thoroughly cooled.

WARNING

Fire Risk. Disposal of Ashes

- Ashes should be placed in metal container with tight fitting lid.
- Do not place metal container on combustible surface.
- Ashes should be retained in closed container until all cinders have thoroughly cooled.

3. Appliance Inspection

- Frequency: Every 2 months at the same time the chimney and chimney connector are inspected.
- By: Homeowner

Check for:

- Cracks in glass
- Door handle smooth cam operation
- · Baffle and ceramic blanket correct placement
- Baffle for warp-age
- Firebrick for cracks, broken or crumbly
- Door gasket (Dollar bill test): Place a dollar bill between the stove and the door and then shut the door. If you can pull the dollar bill out, replace the door gasket.
- Glass frame for loose screws

- 4. Glass Cleaning
- Frequency: As desired
- By: Homeowner

CAUTION

Handle glass assembly with care. Glass is breakable.

- Avoid striking, scratching or slamming glass
- Avoid abrasive cleaners
- Do not clean glass while it is hot

Clean glass with a non-abrasive glass cleaner. Abrasive cleaners may scratch and cause glass to crack. If the deposits on the glass are not very heavy, normal glass cleaners work well. Heavier deposits may be removed by using a damp cloth dipped in wood ashes or by using a commercially available oven cleaner.

After using an oven cleaner, it is advisable to remove any residue with a glass cleaner or soap and water. Oven cleaner left on during the next firing can permanently stain the glass and damage the finish on metal surfaces.

A portion of the combustion air entering the firebox is deflected down over the inside of the door glass. This air flow "washes" the glass, helping to keep smoke from adhering to its surface.

When operated at a low burn rate, less air will be flowing over the glass and the smokey, relatively cool condition of a low fire will cause the glass to become coated.

Operating the appliance with the Burn Rate Air Control and Start-Up Air Control all the way open for 30-45 minutes should remove the built up coating.

CAUTION

Do not use polishes with abrasives. It will scratch surfaces.

5. Cleaning Plated Surfaces

- Frequency: Prior to first burn and then as desired
- By: Homeowner

Clean all the fingerprints and oils from plated surfaces **BEFORE** firing the appliance for the first time. If not cleaned properly before lighting your first fire, the oils can cause permanent markings on the plating.

After the plating is cured, the oils will not affect the finish and little maintenance is required. Wipe clean as needed.

CAUTION

Do not use polishes with abrasives. It will scratch plated surfaces.

6. Inspect Firebrick

- Frequency: After each ash removal
- By: Homeowner

Replace the firebrick if they become crumbly and/or if there is a 1/4 inch (6.35mm) gap between the bricks.

The firebox is lined with firebrick, which has exceptional insulating properties. Do not use a grate; simply build a fire on the firebox floor. Do not operate appliance without firebrick.

- After the coals have completely cooled, remove all old brick and ash from unit and vacuum firebox.
- 2. Remove new brick set from box and lay out to the diagram shown in the instructions that come with the brick set or refer to the diagram on the service parts list at the end of this manual.
- 3. Lay bottom bricks in unit.
- Install rear bricks on the top of the bottom bricks. Slide top of bricks under clip on back of firebox wall and push bottom of bricks back.
- Install side bricks. Slide top of brick under clips on side of firebox and push the bottom of the brick until it is flush with the side of the unit.

C. Correct Baffle & Blanket Placement

WARNING

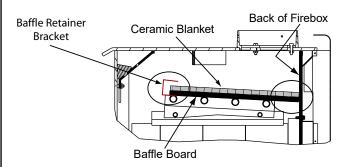
Fire Risk.

Firebox damage due to improper baffle placement is not covered by warranty. Operate the wood burning appliance with the baffle in the correct position only.

Not doing so could result in:

- Reduced efficiency
- Overheating the chimney
- Overheating the rear of the firebox
- Poor performance

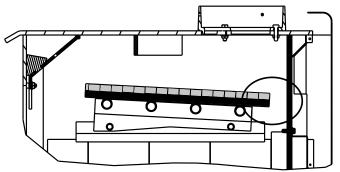
Ensure correct baffle placement and replace baffle components if damaged or missing.



CAUTION

The baffle boards are FRAGILE. Use extreme caution when loading firewood to prevent:

Cracking, breaking or damaging the baffle boards
 DO NOT operate the appliance without baffle boards


CORRECT POSITION

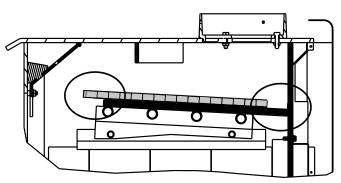
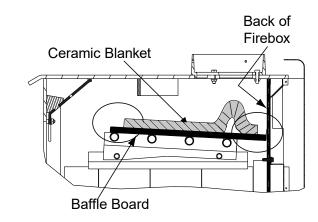

Ceramic Blanket and Baffle Board MUST be in contact with the back of the firebox and even with each other in the front.

Figure 20.1


INCORRECT POSITIONS

Ceramic Blanket and Baffle Board are NOT in contact with the back of the firebox.

Ceramic Blanket is NOT in contact with the back of the firebox and NOT even with the Baffle Board in the front.

Ceramic Blanket is bunched up at the back of the firebox and NOT even with the Baffle Board in the front.

Figure 20.2

Troubleshooting Guide

With proper installation, operation, and maintenance your wood appliance will provide years of trouble-free service. If you do experience a problem, this troubleshooting guide will assist you or a qualified service person in the diagnosis of a problem and the corrective action to be taken.

Start Fire Problems	Possible Cause	Solution		
	Not enough kindling/paper or no kindling/paper	Use dry kindling, more paper. Arrange kindling & wood for air movement.		
		Check for restricted termination cap		
		Check for blockage of outside air kit (if installed).		
		Check for flue blockage.		
	Not enough air for fire to ignite	Pre-warm flue before starting fire (refer to Building a Fire on page 13).		
Con not get five started		Check for adequate vent height (refer to Chimney Height / Rise and Run on page 13 of the Installation manual).		
Can not get fire started Excessive smoke or spillage Burns too slowly		Open window below the appliance towards the wind.		
Not enough heat output	Wood condition is too wet, too large	Use dry, seasoned wood (refer to Wood Selection and Storage on page 9).		
	Bed of coals not established before adding wood	Start with paper & kindling to establish bed of coals (refer to Building a Fire on page 13).		
	Flue blockage such as birds' nests or leaves in termination cap	Have chimney inspected for creosote and cleaned by a certified chimney sweep.		
	Down draft or negative pressure	Do not use exhaust fans during start-up (refer to Negative Pressure on page 15).		
	Competition with exhaust devices	Open window below the appliance towards the wind.		
		Mix in hardwood.		
	Extremely dry or soft wood	Mix in less seasoned wood after fire is established (refer to Wood Selection and Storage on page 9).		
Fire burns too fast		Check for correct vent height; too much vertical height creates over drafting.		
Table 24.4	Over drafting	Check location of vent termination (refer to Chimney Termination Requirements on page 12 of the Installation manual).		

Table 21.1

Service Part Replacement

A. Glass

NOTE: Replace with 5mm ceramic glass only.

Service Part: 7000-012

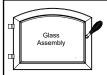
- Ensure that the fire is out and the appliance is cool to the touch.
- Protect a table or counter top with padding or towels. Protect your hands and wear gloves to prevent injury.
- 3. Remove the door with the broken glass by lifting the door up and off of the hinges.
- Lay door face down on a table or counter making sure the handle hangs over the edge so the door lays flat, on a soft surface.
- 5. Remove the screws from each glass retainer and remove the glass. (If screws are difficult to remove, soak with penetrating oil first).
- 6. Center the glass with edges evenly overlapping the opening in the door, (i.e. same space top and bottom, left and right sides).
- Replace the glass retainers. Be careful not to cross thread the screws.
- Tighten each retainer just a few turns until each is secured. Check again for centering of glass in door frame. Continue to tighten each retainer alternately, a few turns at a time, until the glass is secure.

NOTE: DO NOT OVER TIGHTEN RETAINERS - can cause glass to break.

9. Replace the door on the appliance.

Quadra-Fire appliances are equipped with ceramic super heat-resistant glass, which can only be broken by impact or misuse.

WARNING



Injury Risk.

- Use only glass specified in manual.
- DO NOT REPLACE with any other material.

CAUTION

Handle glass assembly with care. **When cleaning glass:**

- Avoid striking, scratching or slamming glass.
- Do NOT clean glass when hot.
- Do NOT use abrasive cleaners.
- Use a hard water deposit glass cleaner on white film.
- Use commercial oven cleaner on heavier deposits.
- Remove all residue of oven cleaner or will permanently stain glass on next firing.

Refer to maintenance instructions.

B. Firebrick

Service Part: SRV7033-006

Replace the firebrick if they become crumbly and/or if there is a 1/4 inch (6.35mm) gap between the bricks.

Inspect the firebrick after each ash removal.

The firebox is lined with high quality firebrick, which has exceptional insulating properties. There is no need to use a grate; simply build a fire on the firebox floor. Do not operate appliance without firebrick.

- 1. After the coals have completely cooled, remove all old brick and ash from appliance and vacuum firebox.
- Remove new brick set from box and lay out to diagram shown.
- 3. Lay bottom bricks in appliance.
- 4. Install rear bricks on the top of the bottom bricks. Slide top of bricks under clip on back of firebox wall and push bottom of brick back.
- 5. Install side bricks. Slide top of brick under clips on side of firebox and push the bottom of the brick until it is flush with the side of the appliance.

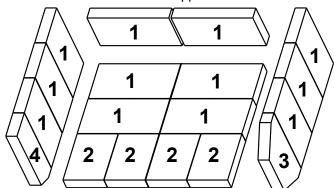


Figure 22.1

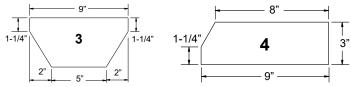


Figure 22.2

Figure 22.3

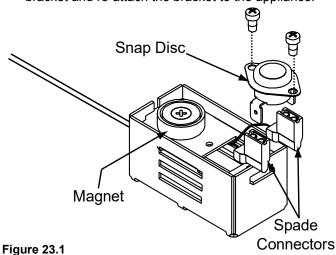

Placement	Dimensions	Qty Required
1	9" x 4.5" x 1.25"	12
2	6" x 4.5" x 1.25"	4
3	9" x 4.5" x 1.25" w/Angles	1
4	9" x 3" x 1.25" w/Angle	1

Table 22.1

C. Snap Disc

Service Part: SRV230-0470

- 1. Locate the snap disc bracket assembly at the bottom left rear corner of the appliance.
- 2. A magnet holds the bracket to the appliance. Pull the bracket down away from the appliance to expose the snap disc.
- 3. Pull the snap disc and spade connectors up and out of bracket as shown in **Figure 23.1**
- 4. Using a Phillips head screw driver, remove the 2 screws from the snap disc and then remove the snap disc from the spade connectors. Replace with new snap disc and re-connect to spade connectors.
- 5. Push the snap disc and spade connectors back inside bracket and re-attach the bracket to the appliance.

D. Door Handle Assembly

CAUTION

Do not over tighten lock nut. The door handle needs to move smoothly.

Service Part: 832-0540

- 1. Install washer on door handle shaft.
- 2. Slide door handle through door.
- 3. Install second washer(s) as shown in Figure 23.2.
- 4. Install key in groove.
- Align groove in latch cam with key; slide latch cam over shaft
- 6. Install locknut but do not over tighten, the handle needs to move smoothly.
- 7. Install spring handle turning in a counter-clockwise motion to <u>required</u> 2 inch (51mm) clearance location on door handle rod (**Figure 23.2**).

2 inch (51mm) clearance

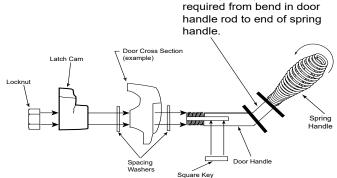


Figure 23.2

E. Baffle Removal

Service Part: SRV7033-209

- 1. Remove all ash from the firebox, and extinguish all hot embers before disposal into a metal container.
- 2. The baffle board has 2 pieces; with the ceramic blanket still in place, slide one baffle piece over the top of other one and pull out top piece through the door opening and then remove bottom baffle piece (Figure 24.1).
- 3. Remove the ceramic blanket (Figure 24.2).
- 4. Re-install the baffle pieces one piece at a time. Be sure the baffle boards are even with the front manifold tube and is resting on all tubes (Figures 24.1, Figure 24.3, and Figure 24.4).
- 5. To re-install the ceramic blanket, it is easier to fold it in half first. Place on top of baffle board, open up and flatten and smooth out the blanket. Re-check the baffle board for correct positioning (**Figure 24.3**).

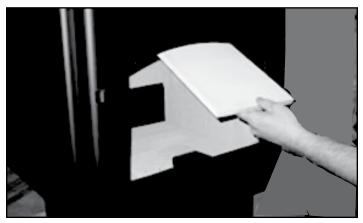
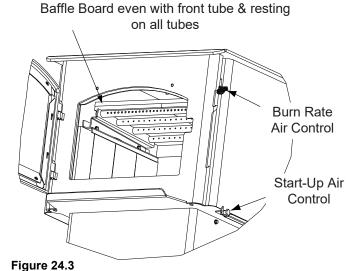



Figure 24.1 - Baffle

Figure 24.2 - Ceramic Blanket

Ceramic Blanket on Top

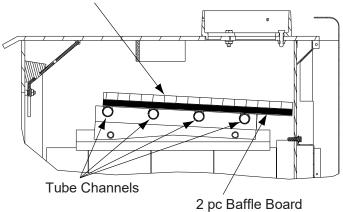


Figure 24.4

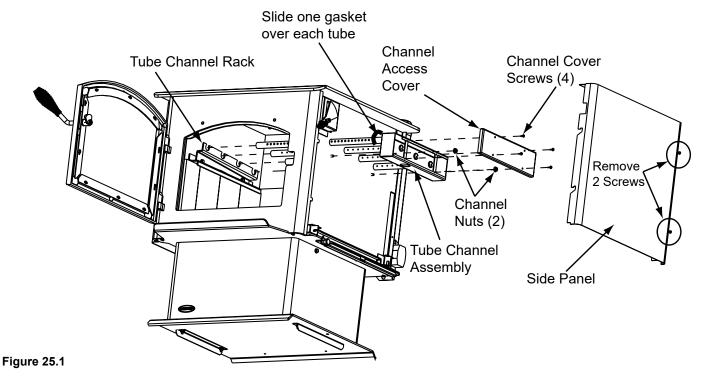
F. Tube Channel Assembly

Service Part: SRV7033-023

Removing Tube Channel Assembly

- Remove the right side shield by removing 2 screws in the back using a Phillips head screw driver.
- Remove 4 screws from channel access cover and remove cover.
- 3. Locate 2 channel nuts inside of chamber and remove using a 7/16 socket wrench. Slide out tube channel assembly.

NOTE: Soak the bolts with penetrating oil for at least 15 minutes before trying to remove them.


Replacing Tube Channel Assembly

- 1. Slide one gasket onto each tube.
- 2. Slide the tube channel assembly into side of firebox and insert each tube into the corresponding hole in the tube channel rack starting with the back hole first.
- 3. Make sure tube channel assembly is flush against the side of the appliance and secure with channel nuts.
- 4. Re-install channel cover and side shield.

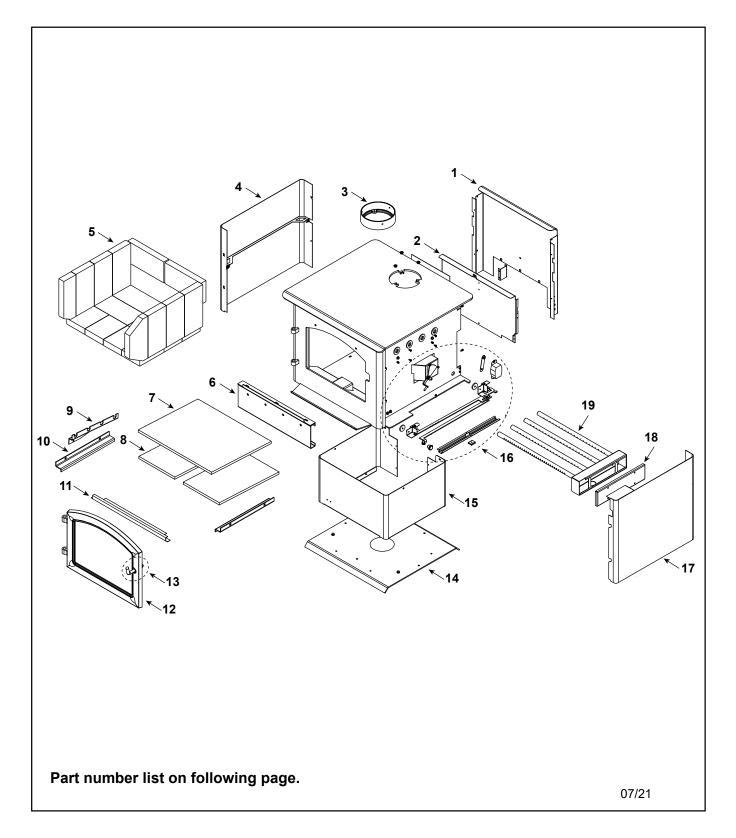
NOTE: Service Space

In order to replace the tube channel assembly a clearance of 19 inches (483mm) is required on the right side of appliance in order to remove the tubes with the appliance in place.

If space is not available, the appliance will have to be disconnected from the chimney to proceed with the tube replacement.

Reference Materials A. Service and Maintenance Log

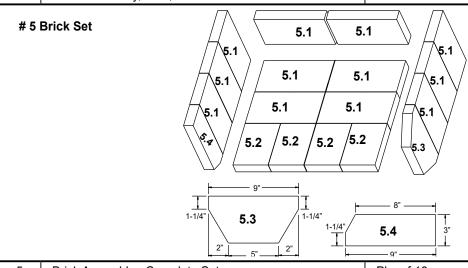
Date of Service	Performed By	Description of Service
	<u>I</u>	


Date of Service	Performed By	Description of Service

31M-ACC-C

Millennium - Wood Stove **Advanced Combustion Control (ACC)**

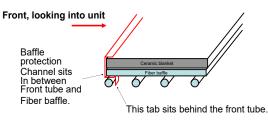
Beginning Manufacturing Date: June 2017 Ending Manufacturing Date: Active


IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

SRV7033-298

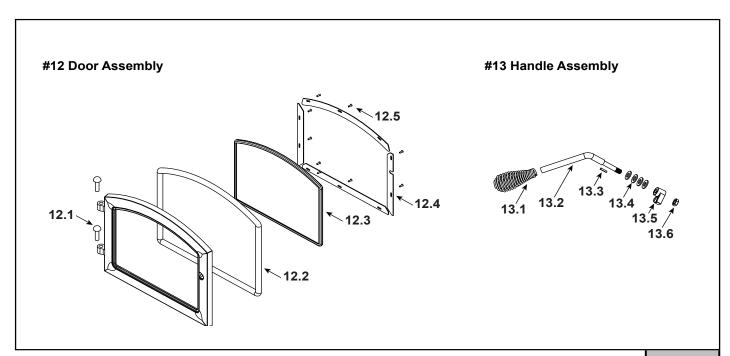
Stocked at Depot

ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
1	Air Channel, Convection w/Bracket (Retain Original SN Label)		SRV7033-144	
2	Air Supply Back		SRV7033-134	
3	Flue Collar		SRV7000-302	Y
4	Panel Assembly, Side, Left		SRV7033-019	



		·	t	
5	Brick Assembly - Complete Set	Pkg of 18	SRV7033-006	
5.1	5.1 Priok 0 v 4.1/2 v 1.1/4" (Oty. 12 Pog.)		832-0550	
5.1	Brick, 9 x 4-1/2 x 1-1/4" (Qty. 12 Req.)	Pkg of 6	832-3040	
5.2	Brick, 6 x 4-1/2 x 1-1/4"	Qty. 4 Req.	SRV7128-002	
5.3	Brick, 9 x 4-1/2 x 1-1/4" w/angles, see diagram	Qty. 1 Req.	SRV7128-805	
5.4	Brick, 9 x 3 x 1-1/4" w/angle, see diagram	Qty. 1 Req.	SRV7128-617	
6	Rear Channel Assembly		SRV7033-002	Y
7	Ceramic Fiber Blanket, 1/2" Thick (19" W x 13-3/4" H)		832-3390	Y
8	Baffle Board - 9-1/2 in W x 13-3/4 in H	Pkg of 2	SRV7033-209	Y
9	Tube Support Rack		SRV7033-148	
10	Brick Retainer		SRV7033-149	

#11 Baffle Protection Channel


11

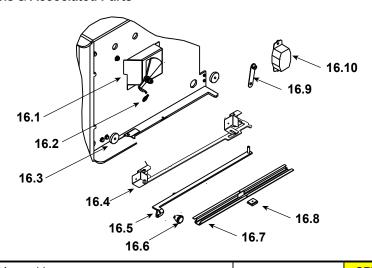
Additional service part numbers appear on following page.

Baffle Protection channel

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

model number and serial number when requesting service parts from your dealer or distributor.			at Depot	
ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
40	D A	Black	DR-31/43BK-FH	Y
12	Door Assembly	Nickel	DR-31/43NL-FH	Y
40.4	Llings Ding 4/0"	Black	7000-606/2	Y
12.1	Hinge Pins, 1/2"	Nickel	SRV430-5320	
12.2	Rope, Door, 3/4" x 84" - Field cut to Size	7 Ft Length	832-1680	Y
12.3	Door Glass Assembly - 15-1/2" W x 13-3/8" H		SRV7000-012	Y
	Gasket, Glass Tape - Field cut to Size	5 Ft Length	832-0460	Y
12.4	Glass Frame Set		832-0350	
12.5	Screw, Flat Head Philips 8-32 x 1/2	Pkg of 12	220-0490/12	Y
13	Door Handle Assembly		832-0540	
13.1 Handle, Spring	Handle Chrine	Black	SRV7000-613	Y
	Handle, Spring	Nickel	250-8330	Y
13.2	Door Handle, Formed		SRV430-1131	Υ
13.3	Key, Cam Latch		SRV430-1151	
13.4	Washer, SAE, 3/8	Pkg of 3	832-0990	Y
13.5	Cam Latch		SRV430-1141	
13.6	Nut, Locking Door Handle	Pkg of 24	226-0100/24	Y
	Component Pack: (Spring Handles(1) 1/2" & (2) 1/4", 2 Hinge Pins, & Quadra-Fire Logo)	Nickel	436-5360	

Additional service part numbers appear on following page.


IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked at Depot

ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
14	Pedestal Riser		SRV7033-207	
15	Pedestal Base		SRV7033-163	
	Logo, Quad Black	Pkg of 10	7000-649/10	

#16 Burn Rate Controls & Accociated Parts

16.1	Burn Rate Control Assembly		SRV7033-033	Y
16.2	Spring Handle, 1/4", Black		SRV7000-614	Υ
16.3	Door Gasket - Front & Rear Air Timer Doors		7033-282	Y
16.4	Timer Air Control Assembly		SRV7033-052	Υ
	Rear Air Door Assembly		SRV7033-024	Υ
16.5	Rear Air Control Arm Assembly		SRV7033-035	Υ
16.6	Start-Up Control Knob		SRV7000-343	
16.7	Air Control Rod Guide		SRV7033-210	
16.8	Latch, Magnet	For Air Control	SRV229-0631	
16.9	Timer Arm Assembly		SRV7033-034	Υ
16.10	Timer (Only) Replacement Assembly		SRV480-1940	Υ
17	Panel Assembly, Side, Right		SRV7033-017	
18	Tube Channel Top - Tube Channel Access Cover		SRV7033-237	
19	Tube, Channel Assembly	Manifold Tubes	SRV7033-023	Y
	Gasket, Manifold	Pkg of 4	7038-168/4	Υ
	Component Pack (Includes Touch-Up Paint, Spring Handles (1) 1/2" and (2) 1/4", Trimount Plug, Owners Manual and Warranty Card).	Black & Gold Trim	SRV7033-075	
	Paint Touch-Up		3-42-19905	
	Plug, Trimount, .250"	Pkg of 24	229-0880/24	Υ

Additional service part numbers appear on following page.

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked at Depot

ITEM	DESCRIPTION	COMMENTS	PART NUMBER	at Depo
I CIVI	ACCESSORI	_	PART NUMBER	
		<u> </u>	DK ACC	T
	Blower Assembly		BK-ACC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Blower, Convection - Replacement Blower Blower Control Box w/Switch		812-4900	Y
			SRV7000-194	Y
	Component Pack		7033-051	
	Snap Disc Bracket Assembly		SRV7033-036	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Snap Disc, # 1, Convection Blower		SRV230-0470	Y
	Wire Harness, Blower		7033-262	
	Outside Air Kit, Floor & Rear		OAK-ACC	
	Outside Air Collar Assembly		SRV7033-039	
	Outside Air Shield		SRV33271	Y
	Outside Air Cover Plate Assembly		SRV7033-041	Y
	Upgrade, Door, Nickel		UK-DRNL	
	FACTENED			
	FASTENER	5	DIVALLE DEDAIR	V
	Avk Rivnut Repair Kit - 1/4-20 & 3/8-16 Rivnut Tools	Dien of 40	RIVNUT-REPAIR	Y
	Bolt, Hex Head, 1/4-20 x 1	Pkg of 10	25221A/10	Y
	Button Head 1/4-20 x .5	Pkg of 20	32328/20	Y
	Nut, Keps Lock, 10-32	Pkg of 40	226-0050/40	Y
	Nut, Keps Lock, 8-32	Pkg of 40	226-0060/40	Y
	Nut, Ser Flange Small 1/4-20	Pkg of 24	226-0130/24	Y
	Screw, Sheet Metal #8 x 1/2 S-Grip	Pkg of 40	12460/40	Y
	Washer, 1/4 Sae	Pkg of 24	28758/24	Y

CONTACT INFORMATION

Hearth & Home Technologies 352 Mountain House Road Halifax, PA 17032 Division of HNI INDUSTRIES

Please contact your Quadra-Fire dealer with any questions or concerns.

For the number of your nearest Quadra-Fire dealer
log onto www.quadrafire.com

CAUTION

DO NOT DISCARD THIS MANUAL

- Important operating and maintenance instructions included.
- Read, understand and follow these instructions for safe installation and operation.
- Leave this manual with party responsible for use and operation of this appliance.

We recommend that you record the following pertinent information for your heating appliance.

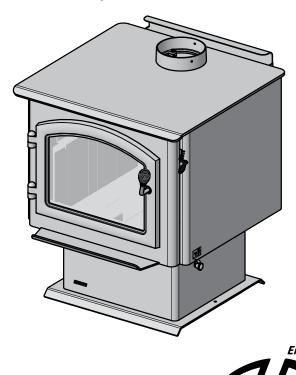
Serial Number:	Location on appliance:
Dealership purchased from:	Dealer Phone: 1() -
Notes:	

This product may be covered by one or more of the following patents: (United States) 5341794, 5263471, 6688302, 7216645, 7047962 or other U.S. and foreign patents pending.

Installation Manual

Installation & Appliance Set-Up

INSTALLER: Leave this manual with party responsible for use and operation.


OWNER: Retain this manual for future reference.

NOTICE: DO NOT DISCARD THIS MANUAL

3100 MILLENNIUM WOOD
APPLIANCE
AUTOMATIC COMBUSTION
CONTROL (ACC)

MODEL NUMBER: 31M-ACC-C

Installation and service of this appliance should be performed by qualified personnel. Hearth & Home Technologies recommends HHT Factory Trained or NFI certified professionals.

WARNING

If the information in these instructions is not followed exactly, a fire could result causing property damage, personal injury, or death.

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
- <u>Do not over-fire</u> If appliance or chimney connector glows, you are over-firing. Over-firing will void your warranty.
- Comply with all minimum clearances to combustibles as specified.

Failure to comply may cause house fire.

WARNING

HOT SURFACES!

Glass and other surfaces are hot during operation AND cool down.

Hot glass and appliance will cause burns.

- Do not touch glass until it is cooled
- Use leather gloves when reloading fuel
- NEVER allow children to touch glass
- · Keep children away
- CAREFULLY SUPÉRVISE children in same room as appliance.
- Alert children and adults to hazards of high temperatures
- High temperatures may ignite clothing or other flammable materials.
- Keep clothing, furniture, draperies and other flammable materials away.

WARNING

Fire Risk.

For use with solid wood fuel only. Other fuels may over-fire and generate poisonous gases (i.e. carbon monoxide).

NOTE: To obtain a French translation of this manual, please contact your dealer or visit www.quadrafire.com

REMARQUE: Pour obtenir une traduction française de ce manuel, s'il vous plaît contacter votre revendeur ou visitez www.quadrafire.com

Safety Alert Key:

- **DANGER!** Indicates a hazardous situation which, if not avoided will result in death or serious injury.
- **WARNING!** Indicates a hazardous situation which, if not avoided <u>could</u> result in death or serious injury.
- **CAUTION!** Indicates a hazardous situation which, if not avoided, <u>could</u> result in minor or moderate injury. **NOTICE:** Indicates practices which may cause damage to the appliance or to property.

TABLE OF CONTENTS

1 Important Safety Information	4 Chimney Systems
A. Appliance Safety Certification	A. Locating Your Appliance & Chimney
B. Appliance Emissions Certification	B. Chimney Termination Requirements
C. BTU & Efficiency Specifications	C. 2-10-3 Rule
D. Mobile Home Approved 4	D. Chimney Height / Rise and Run
E. Glass Specifications	E. Venting Components
F. Non-Combustible Materials 4	F. Chimney Systems
G. Combustible Materials 4	G. Installing Chimney Components
H. Sleeping Room 4	H. Proper Draft
I. California - Prop65	5 Appliance Set-Up
2 Getting Started	A. Outside Air Kit Installation
A. Design and Installation Considerations 5	B. Door Handle Assembly
B. Fire Safety	C. Blower (Optional)
C. Negative Pressure	6 Mobile Home Installation
D. Tools And Supplies Needed 6	
E. Inspection of Appliance and Components 6	7 Reference Materials
F. Removal of Appliance from Shipping Materials 6	A. Service & Maintenance Log
G. Install Checklist	B. Accessories
3 Dimensions and Clearances	
A. Appliance Dimensions	
B. Hearth Protection Requirements	→ = Contains updated information
C Clearances to Combustibles 10	

Important Safety Information

A. Appliance Safety Certification

Model Number:	31M-ACC-C
Laboratory:	OMNI Test Laboratories, Inc.
Report Number:	0061WS066S
Туре:	Listed Room Appliance, Solid Fuel Type
Standard:	UL1482-11 (R2015), ULC S627-00 and (UM) 84-HUD. Mobile Home Approved.

B. Appliance Emissions Certification

Model Number:	31M-ACC-C	
Laboratory:	OMNI Test Laboratories, Inc.	
Report Number:	0061WS066E	
Standard: ASTM E2515, ASTM E2780		
Can be found at: www.quadrafire.com/about-us/epa-certification		

The 31M-ACC-C is Certified to comply with 2020 crib wood particulate emission standards.

This wood appliance needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood appliance in a manner inconsistent with operating instructions in this manual.

NOTE: This installation must conform with local codes. In the absence of local codes you must comply with (UM) 84-HUD and NFPA211 in the U.S.A. and CAN/CSA-B365 Installation Codes in Canada.

C. BTU & Efficiency Specifications

EPA Certification Number:	Number: 86-17
EPA Certified Emissions:	1.9 grams per hour
*LHV Tested Efficiency:	78.3%
**HHV Tested Efficiency:	72.5%
***EPA BTU Output:	13,900 to 29,100 / hr
****Peak BTU/Hour Output:	51,000
Vent Size:	6 inches
Firebox Size:	1.89 cubic feet
Recommended Log Length:	16 inches
Fuel:	Seasoned Cord Wood (20% moisture)

- * Weighted average LHV (Low Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. LHV assumes the moisture is already in a vapor state so there is no loss in energy to vaporize.
- ** Weighted average HHV (High Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. HHV includes the energy required to vaporize the water in the fuel.
- *** A range of BTU outputs calculated using HHV Efficiency and the burn rates from the EPA tests, using Douglas Fir dimensional lumber.
- **** A peak BTU out of the appliance calculated using the maximum first hour burn rate from the High EPA Test and BTU content of seasoned cordwood (8600) times the efficiency.

D. Mobile Home Approved

- This appliance is approved for mobile home installations; when not installed in a sleeping room and when an outside combustion air inlet is provided.
- The structural integrity of the mobile home floor, ceiling, and walls must be maintained.
- The appliance must be properly grounded to the frame
 of the mobile home with #8 copper ground wire, and
 chimney must be listed to UL103 HT or a listed UL1777 full length six inch (152mm) diameter liner must
 be used
- Outside Air Kit, part OAK-ACC must be installed in a mobile home installation.

E. Glass Specifications

This appliance is equipped with 5mm ceramic glass. Replace glass only with 5mm ceramic glass. Please contact your dealer for replacement glass.

F. Non-Combustible Materials

Material which will not ignite and burn, composed of any combination of the following:

- Steel
- Plaster
- Brick
- Iron
- Concrete
- Tile
- Glass
- Slate

Materials reported as passing ASTM E 136, Standard Test Method for Behavior of Metals, in a Vertical Tube Furnace of 750°C.

G. Combustible Materials

Material made of/or surfaced with any of the following materials:

- Wood
- Compressed Paper
- Plant Fibers
- Plastic
- Plywood/OSB
- Sheet Rock (drywall)

Any material that can ignite and burn: flame proofed or not, plastered or non-plastered.

H. Sleeping Room

When installed in a sleeping room it is recommended that a smoke and/or CO alarm be installed in the bedroom. The size of the room must be at least 50ft³ per 1,000 Btu/hr stove input, if the stove exceeds the room size, outside air must be installed.

I. California - Prop65

WARNING

This product and the fuels used to operate this product (wood), and the products of combustion of such fuels, can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, and carbon monoxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to: WWW.P65Warnings.ca.gov

WARNING

Fire Risk

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage.

For assistance or additional information, consult a qualified installer, service agency or your dealer.

NOTE: Hearth & Home Technologies, manufacturer of this appliance, reserves the right to alter its products, their specifications and/or price without notice.

Hearth & Home Technologies WILL NOT warranty appliances that exhibit evidence of over-firing. Evidence of over-firing includes, but is not limited to:

- Warped air tube
- Deteriorated refractory brick retainers
- Deteriorated baffle and other interior components

A. Design and Installation Considerations

Consideration must be given to:

- Safety
- Convenience
- · Traffic flow
- Chimney and chimney connector required

It is a good idea to plan your installation on paper, using exact measurements for clearances and floor protection, before actually beginning the installation. If you are not using an existing chimney, place the appliance where there will be a clear passage for a factory-built listed chimney through the ceiling and roof.

We recommend that a qualified building inspector and your insurance company representative review your plans before and after installation.

If this appliance is in an area where children may be near it is recommended that you purchase a decorative barrier to go in front of the appliance. Remember to always keep children away while it is operating and do not let anyone operate this appliance unless they are familiar with these operating instructions.

CAUTION

Check building codes prior to installation.

- Installation MUST comply with local, regional, state and national codes and regulations.
- Consult insurance carrier, local building, fire officials or authorities having jurisdiction about restrictions, installation inspection, and permits.

WARNING

Asphyxiation Risk.

- Do NOT connect this appliance to a chimney flue servicing another appliance.
- Do NOT connect to any air distribution duct or system.

May allow flue gases to enter the house.

NOTICE: Hearth & Home Technologies assumes no responsibility for the improper performance of the appliance system caused by:

- Inadequate draft due to environmental conditions
- Down drafts
- · Tight sealing construction of the structure
- Mechanical exhausting devices
- Over drafting caused by excessive chimney heights
- Ideal performance is with height of chimney between 14-16 feet (4.26-4.88m) measured from the base of the appliance.

B. Fire Safety

<u>To provide reasonable fire safety, the following should be</u> given serious consideration:

- Install at least one smoke detector on each floor of your home to ensure your safety. They should be located away from the heating appliance and close to the sleeping areas. Follow the smoke detector manufacturer's placement and installation instructions, and be sure to maintain regularly.
- 2. A conveniently located Class A fire extinguisher to contend with small fires resulting from burning embers.
- 3. A CO detector should be installed in the room with the appliance.
- A practiced evacuation plan, consisting of at least two escape routes.
- 5. A plan to deal with a chimney fire as follows:
 - In the event of a chimney fire:
 - Evacuate the house immediately
 - Notify fire department.

C. Negative Pressure

WARNING

Asphyxiation Risk.

- Negative pressure can cause spillage of combustion fumes, soot and carbon monoxide.
- Appliance needs to draft properly for safety.

Negative pressure results from the imbalance of air available for the appliance to operate properly. It can be strongest in lower levels of the house.

Causes include:

- Exhaust fans (kitchen, bath, etc.)
- Range hoods
- Combustion air requirements for furnaces, water appliances and other combustion appliances
- Clothes dryers
- Location of return-air vents to furnace or air conditioning
- Imbalances of the HVAC air handling system
- Upper level air leaks such as:
 - Recessed lighting
 - Attic hatch
 - Duct leaks

To minimize the effects of negative air pressure:

- Install optional outside air kit with the intake facing prevailing winds during the heating season
- Ensure adequate outdoor air for all combustion appliances and exhaust equipment
- Ensure furnace and air conditioning return vents are not located in the immediate vicinity of the appliance
- Avoid installing the appliance near doors, walkways or small isolated spaces
- Recessed lighting should be a "sealed can" design
- Attic hatches weather stripped or sealed
- Attic mounted duct work and air handler joints and seams taped or sealed
- Basement installations should be avoided

WARNING

Fire Risk.

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

D. Tools And Supplies Needed

Before beginning the installation be sure the following tools and building supplies are available:

- Reciprocating saw
- Framing material
- Pliers
- High temp caulking material
- Hammer
- Gloves
- Phillips screwdriver
- Framing square
- Flat blade screwdriver
- Electric drill and bits
- Plumb line
- Safety glasses
- Level
- Tape measure
- Misc. screws and nails
- 7/16 socket or wrench

1/2-3/4 in. length, #6 or #8 self-drilling screws

E. Inspection of Appliance and Components

- Remove appliance and components from packaging and inspect for damage.
- Report to your dealer any parts damaged in shipment.
- Read all the instructions before starting the installation. Follow these instructions carefully during the installation to ensure maximum safety and benefit.

F. Removal of Appliance from Shipping Materials

- 1. Remove box and 2x4 structural boards being careful not to damage product.
- 2. Using 7/16 socket or wrench remove one bolt located inside front part of appliance (**Figure 6.1**).
- 3. Moving to the back of the appliance and using 7/16 socket or wrench remove two bolts (**Figure 6.1**).
- Carefully pull appliance off of pallet and put in desired location following Hearth Pad Requirements on page 9 and Clearance to Combustibles on pages 10.

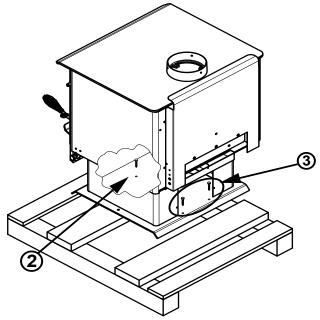


Figure 6.1

WARNING

Fire Risk.

Inspect appliance and components for damage. Damaged parts may impair safe operation.

- Do NOT install damaged components.
- Do NOT install incomplete components.
- Do NOT install substitute components.

Report damaged parts to dealer.

G. Install Checklist

ATTENTION INSTALLER: Follow this Standard Work Checklist This standard work checklist is to be used by the installer in conjuction with, not instead of, the instructions contained in this installation manual. Customer: Date Installed: Lot / Address: Location of Appliance: Installer: ___ Dealer / Distributor Phone #: Serial #: _____ Model: WARNING! Risk of Fire or Explosion! Failure to install appliance according to these instructions can lead to a fire or explosion. **Appliance** Install IF NO, WHY? Verified clearances to combustibles. Appliance is leveled and connector is secured to appliance. Hearth extension size/height decided. Outside air kit installed. Floor protection requirements have been met. If appliance is connected to a masonry chimney, it should be cleaned and inspected by a professional. If installed to a factory built metal chimney, the chimney must be installed according to the manufacturer's instructions and clearances. **Chimney** Chimney configuration complies with diagrams. Chimney installed, locked and secured in place with proper clearance. Chimney meets recommended height requirements (14-16 feet). Roof flashing installed and sealed. Terminations installed and sealed. **Clearances** Combustible materials not installed in non-combustible areas. Verified all clearances meet installation manual requirements. Mantels and wall projections comply with installation manual requirements. Protective hearth strips and hearth extension installed per manual requirements. **Appliance Setup** All packaging and protective materials removed. Firebrick, baffle and ceramic blanket installed correctly. All labels have been removed from the door. All packaging materials are removed from inside/under the appliance. Manual bag and all of its contents are removed from inside/under the appliance and given to the party responsible for use and operation. Hearth & Home Technologies recommends the following: Photographing the installation and copying this checklist for your file. That this checklist remain visible at all times on the appliance until the installation is complete. Comments: Further description of the issues, who is responsible (Installer/Builder/Other Trades, etc.) and corrective action needed: Comments communicated to party responsible (Builder / Gen. Contractor) (Installer) (Date)

A. Appliance Dimensions

NOTE: Flue Collar size is 6 inch (152mm) diameter (ID)

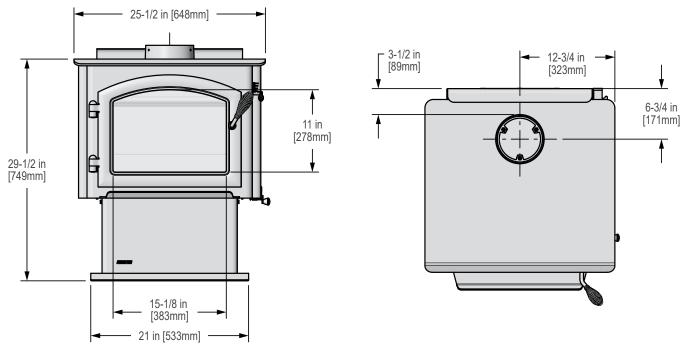


Figure 8.1 - Front View

Figure 8.2 - Top View

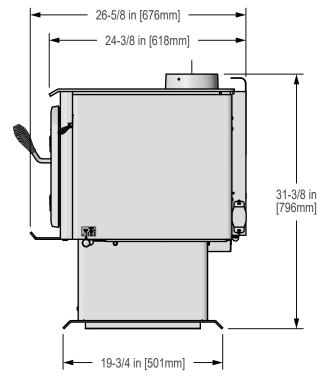


Figure 8.3 - Side View

B. Hearth Protection Requirements

USA, minimum flat wall hearth pad dimensions

31-5/8 in

minimum

Fuel loading door

16 in. from fuel door opening

15-5/8 in

Figure 9.1

EMBER PROTECTION: Ember protection shall be either a Type 1 floor protector or made of non-combustible material to the requirements below.

Floor protector must be non-combustible material, extending beneath appliance with a minimum of 16 inches (406mm) in front of glass and 8 inches (203mm) to both sides of the fuel loading door. Open the door and measure 8 inches (203mm) from the side edge of the opening in the face of the appliance. *See Exception.

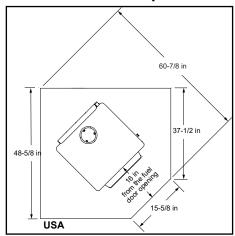
39 in minimum

·8 in

In Canada, similar floor protection must be provided 18 inches (457mm) in front and 8 inches (203mm) from the sides and rear of the appliance unless the hearth pad is placed against the wall (Figure 9.2). Then the clearance may be reduced using double wall pipe and the Clearance to Combustibles table listed on page 10.

*Exception: Non-combustible floor protector must extend beneath the flue pipe when installed with horizontal venting and extend 2 inches (51mm) beyond each side (Figure 9.2).

4


WARNING

Fire Risk.

Hearth pads must be installed exactly as specified. High temperatures or hot embers may ignite concealed combustibles.

Corner hearth pad dimensions with single wall pipe

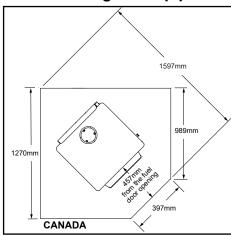


Figure 9.3

Figure 9.5

**Canada, flat wall hearth pad dimensions with double wall horizontal venting

**This dimension will vary depending installation.

Corner hearth pad dimensions with double wall pipe

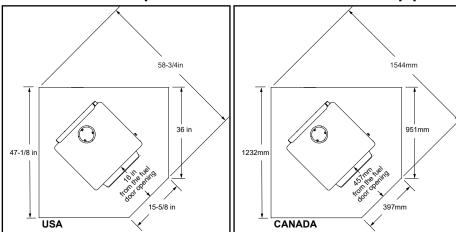
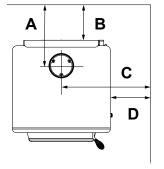


Figure 9.4 Figure 9.6

C. Clearances to Combustibles

Note: If mantle clearance specifications are not listed or to reduce mantle clearances you can follow NFPA211 regulations to assure safe installation of this product. Please consult with your local building inspector before attempting any clearance reductions.


			ES TO COMBUS DIMENSIONS AF					
		712.71, 0,7110		OOD APPLIANCE		2 0022/111		
	Α	В	С	D	E	F	G	Н
	INSTALLATION: FULL VERTICAL							
SINGLE WALL PIPE								
31M-ACC-C	18-1/4 (464)	11-3/4 (298)	28-1/2 (724)	16 (406)	8 (203)	20 (208)	48 (1220)	12 (305)
DOUBLE WALL PIPE								
31M-ACC-C	13-1/2 (343)	6-1/2 (165)	25 (635)	13 (330)	6-1/2 (165)	18-1/2 (470)	48 (1220)	9 (229)
	INSTALLATION: 90 DEGREE ELBOW OFF TOP OF APPLIANCE THROUGH BACKWALL							
SINGLE WALL PIPE								
31M-ACC-C	15 (381)	8-1/2 (216)	25 (635)	13 (330)	8 (203)	20 (508)	48 (1220)	12 (305)
DOUBLE WALL PIPE								
31M-ACC-C	11 (279)	4-1/2 (114)	20-1/2 (521)	8-1/2 (216)	6-1/2 (165)	18-1/2 (470)	48 (1220)	9 (229)
	INSTALLATION: ALCOVE							
DOUBLE WALL PIPE								·
31M-ACC-C	14-3/4 (375)	8-1/4 (210)	26-1/2 (673)	14-1/2 (368)	N/A	N/A	48 (1220)	N/A

For alcove only: Six inch diameter listed Double wall air insulated connector pipe with UL103 HT listed factory built Class A chimney or masonry chimney. Maximum depth of Alcove shall be no more than 48 inches (1219mm) and the referenced alcove clearances. Canada must comply with CAN/ULC-S269 M67 for the 650° factory built chimney.

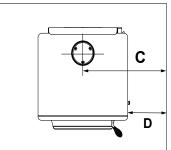
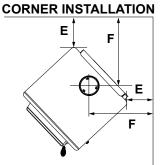
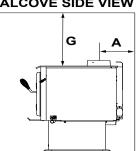
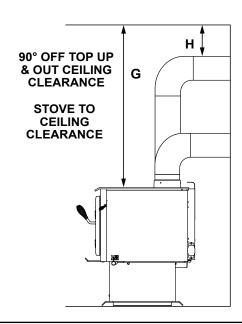

* FOLLOW PIPE MANUFACTURES CLEARANCES AS REQUIRED

Table 10.1


BACKWALL / SIDEWALL




ALCOVE TOP VIEW

ALCOVE SIDE VIEW

NOTE: Clearances may only be reduced by means approved by the regulatory authority having jurisdiction.

WARNING

Fire Risk.

- Comply with all minimum clearances to combustibles as specified.
- Failure to comply may cause house fire.

NOTE: Service Space

In order to replace the tube channel assembly a clearance of 19 inches (483mm) is required on the right side of appliance in order to remove the tubes with the appliance in place.

If space is not available, the appliance will have to be disconnected from the chimney to proceed with the tube replacement.

Chimney Systems

A. Locating Your Appliance & Chimney

Location of the appliance and chimney will affect performance. As shown in **Figure 11.1** the chimney should:

- Install through the warm space enclosed by the building envelope. This helps to produce more draft, especially during lighting and die down of the fire.
- Penetrate the highest part of the roof. This minimizes the affects of wind turbulence and down drafts.
- Consider the appliance location in order to avoid floor and ceiling attic joists and rafters.
- Locate termination cap away from trees, adjacent structures, uneven roof lines and other obstructions.

Your local dealer is the expert in your geographic area and can usually make suggestions or discover solutions that will easily correct your flue problem.

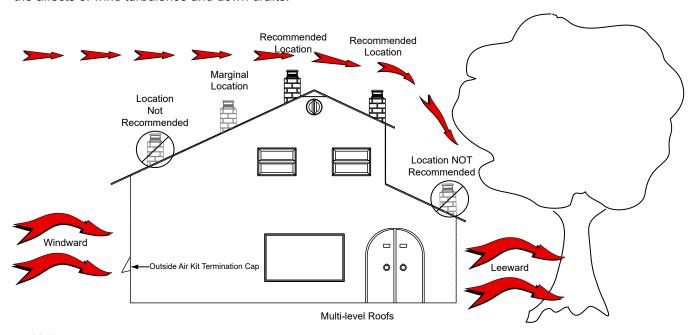


Figure 11.1

B. Chimney Termination Requirements

Follow manufacturer's instructions for clearance, securing flashing and terminating the chimney (**Figure 12.1 and Figure 12.2**).

- Must have an approved and Listed cap
- Must not be located where it will become plugged by snow or other material
- Must terminate at least 3 feet (91cm) above the roof and at least 2 feet (61cm) above any portion of the roof within 10 feet (305cm).
- Must be located away from trees or other structures

NOTICE:

- Chimney performance may vary.
- Trees, buildings, roof lines and wind conditions affect performance.
- Chimney height may need adjustment if smoking or overdraft occurs.

NOTICE: Locating the appliance in a basement or in a location of considerable air movement can cause intermittent smoke spillage from appliance. Do not locate appliance near

- Frequently open doors
- Central heat outlets or returns

C. 2-10-3 Rule

These are safety requirements and are not meant to assure proper flue draft.

This appliance is made with a 6 inch (152mm) diameter chimney connector as the flue collar on the appliance.

- Changing the diameter of the chimney can affect draft and cause poor performance.
- It is not recommended to use offsets and elbows at altitudes above 4000 feet above sea level and or when there are other factors that affect flue draft.

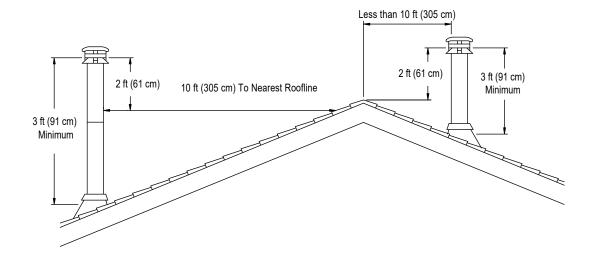


Figure 12.1

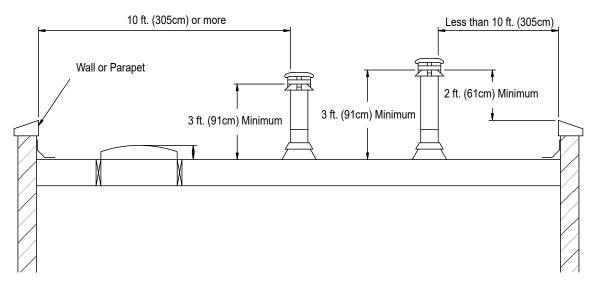


Figure 12.2

D. Chimney Height / Rise and Run

This product was designed for and tested on a 6 inch (152mm) chimney, 14 to 16 feet (420-480cm) high, (includes appliance height) measured from the base of the appliance. The further your stack height or diameter varies from this configuration, the greater the likelihood it may affect performance.

Chimney height may need to be increased by 2 - 3% per each 1000 feet above sea level. It is not recommended to use offsets or elbows at altitudes above 4000 feet above sea level or when there are other factors that affect flue draft.

WARNING

Fire Risk. Inspection of Chimney:

- Chimney must be in good condition.
- Meets minimum standard of NFPA 211
- Factory-built chimney must be 6 inch (152mm) UL103 HT.

WARNING

Asphyxiation Risk.

- DO NOT CONNECT THIS APPLIANCE TO A CHIMNEY FLUE SERVICING ANOTHER APPLIANCE.
- DO NOT CONNECT TO ANY AIR DISTRIBUTION DUCT OR SYSTEM.

May allow flue gases to enter the house.

WARNING

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to the owner's information manual provided with this appliance. For assistance or additional information consult a qualified installer, service agency or your dealer.

Chimney:

The chimney can be new or existing, masonry or prefabricated and must meet the following minimum requirements and as specified in **Chimney Systems** on page 13.

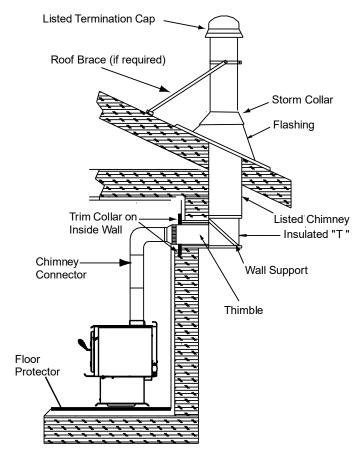


Figure 13.1 - Prefabricated Exterior Chimney

E. Venting Components Chimney Connector:

It is also known as flue pipe or appliance pipe. The chimney connector joins the appliance to the chimney. It must be a 6 inch (152mm) minimum diameter 24 gauge mild steel black or 26 gauge blued steel, or an approved air-insulated double wall venting pipe.

Thimble:

A manufactured or site-constructed device installed in combustible walls through which the chimney connector passes to the chimney. It is intended to keep the walls from igniting. Site constructed thimbles must meet NFPA 211 Standards. Prefabricated must be suitable for use with selected chimney and meet UL103 Type HT Standards. Follow instructions provided by the manufacturer for manufactured thimbles for masonry chimney and prefabricated chimneys.

F. Chimney Systems

Prefabricated Metal Chimney

- Must be minimum 6 inch (152mm) diameter (ID) high temperature chimney listed to UL 103 HT (2100°F) or ULC S629M.
- Must use components required by the manufacturer for installation.
- Must maintain clearances required by the manufacturer for installation.
- Refer to manufacturers instructions for installation.

NOTE: In Canada when using a factory-built chimney it must be safety listed, Type UL103 HT (2100°F) CLASS "A" or conforming to CAN/ULC-S629M, STANDARD FOR 650°C FACTORY-BUILT CHIMNEYS.

Thimble

Site constructed for masonry chimney installation:

Components

A minimum length of 12 inches [305mm] (longer for thicker walls) of solid insulated factory-built chimney length constructed to **UL 103 Type HT** 6 inch (152mm) inside diameter. Chimney needs to extend a minimum of 2 inches (51mm) from the interior wall and a minimum of 1 inch (25mm) from the exterior wall.

Wall spacer, trim collar and wall band to fit solid pack chimney selected.

Minimum 8 inch (203mm) diameter clay liner section (if not already present in chimney) and refractory mortar.

When jurisdiction requires install approved chimney liner in masonry chimney.

Air Clearances

- Masonry chimney clearance must meet NFPA 211 minimum requirement of 2 inches (51mm) to sheet metal supports and combustibles.
- Minimum of 1 inch (25mm) clearance around the chimney connector.
- Top of wall opening is a minimum of 13-1/2 inches (343mm) from ceiling or 4-1/2 inches (114mm) below minimum clearance specified by chimney connector manufacturer. NFPA 211 minimum vertical clearance of 18 inches (457mm) from chimney connector and ceiling or minimum recommended by chimney connector manufacturer (Figure 14.2).

Instructions:

- Open inside wall at proper height for the chimney connector to entry the masonry chimney (Figure 14.2).
- 2. Entry hole to masonry chimney must be lined with an 8 inch (203mm) minimum diameter clay liner, or equivalent, secured with refractory mortar.
- 3. Construct a 17 inch x 17 inch (432mm x 432mm) outside dimension frame from 2 x 2 framing lumber to fit into wall opening. Inside opening of frame should be no less than 14 inch x 14 inch (356mm x 356mm) (Figure 14.2).
- 4. Attach the wall spacer to the chimney side of the frame.
- 5. Nail the frame into the wall opening. The spacer should be on the chimney side.
- Insert the section of the solid insulated chimney into the outer wall of the masonry chimney.
- 7. Tightly secure the length of the solid insulated chimney with the wall band to the masonry chimney.
- Insert a section of chimney connector into the chimney.
 Make sure it does not protrude past the edge of the clay chimney liner inside the chimney.
- Seal the end of the chimney connector to the clay liner with refractory mortar.
- Install trim collar around the solid pack chimney section.

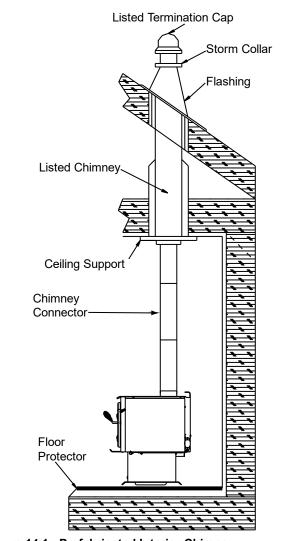


Figure 14.1 - Prefabricated Interior Chimney

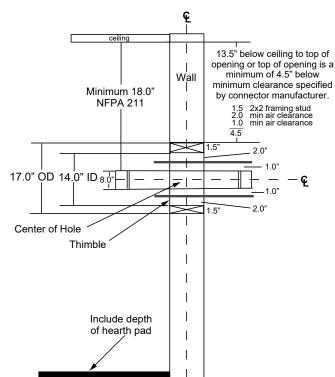


Figure 14.2

Solid Pack Chimney with Metal Supports as a Thimble

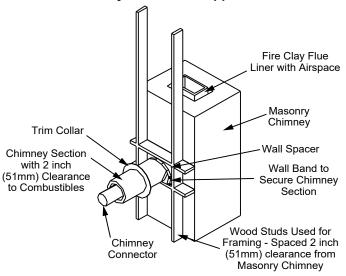


Figure 15.1

WARNING Fire Risk. Do NOT pack insulation or other combustibles between spacers. • ALWAYS maintain specified clearances around venting and spacers. • Install spacers as specified. Failure to keep insulation or other material away from vent pipe may cause fire.

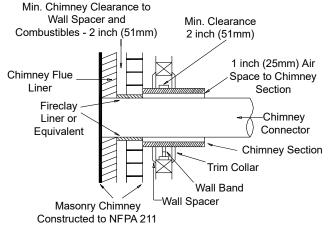


Figure 15.2

G. Installing Chimney Components Chimney Connector

Single wall connector or appliance pipe.

This must be at least 24 gauge mild steel or 26 gauge blue steel. The sections must be attached to the appliance and to each other with the crimped (male) end pointing toward the appliance. All joints, including the connection at the flue collar, should be secured with 3 sheet metal screws. Make sure to follow the minimum clearances to combustibles. Where passage through the wall, or partition of combustible construction is desired in Canada, the installation shall conform to **CAN/CSA-B365**.

<u>Factory-built listed chimney connector (vented).</u>
A listed connector (vented) must be used when installing this appliance in a mobile home. The listed connectors must conform to each other to ensure a proper fit and seal.

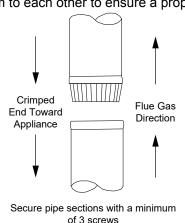


Figure 15.3 - Chimney Connector (Appliance Pipe)

H. Proper Draft

To be sure that your Quadra-Fire appliance burns properly, the chimney draft (static pressure) should be approximately -0.10 inches water column (W.C.) during a high burn and -0.04 inches W.C. during a low burn, measured 6 inches (152mm) above the top of the appliance after one hour of operation at each burn setting.

A. Outside Air Kit Installation

A source of air (oxygen) is necessary in order for combustion to take place. Whatever combustion air is consumed by the fire must be replaced. Air is replaced via air leakage around windows and under doors. In homes that have tightly sealed doors and windows, an outside air source is needed. An optional Outside Air Kit is available.

Items Needed for Installation (not supplied)

- 4 inch flex aluminum pipe, or if using alternate material, then it shall be made from durable, non-combustible, heat resistant material up to 350°F. Cut the pipe to the required length for your installation.
- Phillips head screw driver
- Silicone sealant
- Drills and saws necessary for cutting holes through the wall or flooring in your home.
- 1. Remove all materials from packing box.
- 2. Using a #2 Phillips screw driver attach the flex adapter to the appliance using 4 screws (**Figure 16.1**).
- 3. For floor installations, remove circular" knock-out" in the base of the pedestal.

4. Floor & Rear Installation:

Cut a 4 inch (102mm) hole in outside wall or floor to accommodate outside air piping. Use 4 inch (102mm) aluminum metal flex or rigid piping to directly connect outside air to appliance intake. Use the supplied termination cap with a rodent screen. Seal between the wall (or floor) and the pipe with silicone to prevent moisture penetration.

5. Floor Installation Alternative:

In some instances you may not be able to install the flex pipe as show in **Figure 16.1**. If that is the case, you will need to order SRV7033-041 which includes a cover plate and sealing rope as shown in **Figure 16.2**. The goal is to seal the pedestal so no room air can leak into the pedestal or for cold air infiltration.

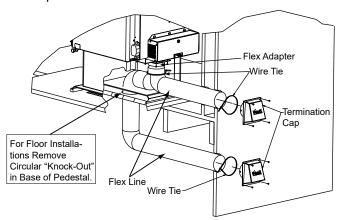


Figure16.1 - Floor & Rear Installation

WARNING

Fire Risk. Asphyxiation Risk.

Do not draw outside combustion air from:

- Wall, floor or ceiling cavity
- Enclosed space such as an attic or garage
- Close proximity to exhaust vents or chimneys

Fumes or odor may result

WARNING

Asphyxiation Risk.

Outside air inlet must be located to prevent blockage from:

- Leaves
- Snow or ice
- Other debris

Block may cause combustion air starvation Smoke spillage may set off alarms or irritate sensitive individuals.

WARNING

Asphyxiation Risk.

Length of outside air supply duct shall NOT exceed the length of the vertical height of the exhaust flue.

- · Fire will not burn properly
- Smoke spillage occurs when door is opened due to air starvation.

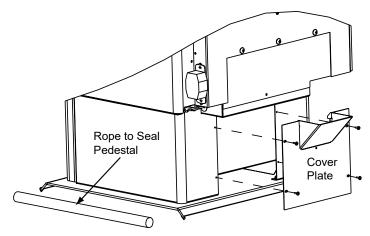


Figure 16.2 - Floor Installation Alternative

B. Door Handle Assembly

Install spring handle using a counter-clockwise motion until the spring handle has a 2 inch clearance from bend of door hand rod (Figure 17.1).

> 2 inch (51mm) clearance required from bend in door handle rod to end of spring handle.

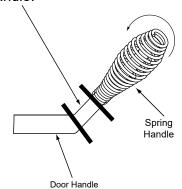


Figure 17.1

C. Blower (Optional)

- 1. Locate bolts supplied with the blower.
- Align holes in mounting flange of blower with bolt holes in appliance. Blower should be positioned at bottom of rear outer skin as shown in Figure 17.2.
- Re-insert and tighten bolts, securing blower onto outer wall of appliance.
- 4. Place the bracket containing the snap disc and magnet under the bottom left rear corner.

See <u>Owner's Manual</u> for detailed operating instructions for the blower and snap disc.

CAUTION

Shock Risk.

- Do NOT remove grounding prong from plug.
- Route cord away from appliance.
- Do NOT route cord under or in front of appliance.
- Plug directly into properly grounded 3 prong receptacle.

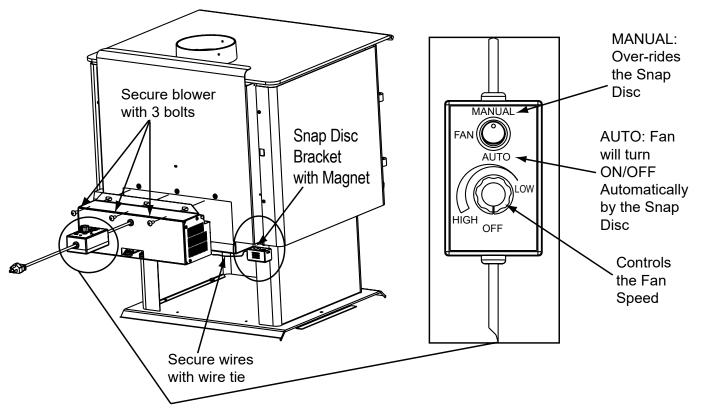


Figure 17.2

6

Mobile Home Installation

You must use a Quadra-Fire Outside Air Kit Part OAK-ACC and (depending on floor installation), Part SRV7033-041 for installation in a mobile home.

- 1. An outside air inlet must be provided for combustion (see page 16 for installation information).
- Appliance must be secured to the mobile home structure by bolting the pedestal through hearth pad and into floor.
- Appliance must be grounded with #8 solid copper grounding wire or equivalent and terminated at each end with N.E.C. approved grounding device.
- 4. Appliance must be installed with an approved UL103 HT ventilated chimney connector, UL103 HT chimney, and terminal cap with spark arrestor.

 Never use a single wall connector (appliance pipe) in a mobile home installation. Use only double-wall connector pipe, Dura-Vent DVL, Selkirk Metalbestos DS or Security DL double-wall connector or any listed double-wall connector pipe.
- In Canada, this appliance must be connected to a 6 inch (152mm) factory-built chimney conforming to CAN/ULC-629M, STANDARD FOR FACTORY BUILT CHIMNEYS.
- Follow the chimney and chimney connector manufacturer's instructions when installing the flue system for use in a mobile home.
- Maintain clearance to combustibles.
- Floor protection requirements must be followed precisely.
- 9. Use silicone to create an effective vapor barrier at the location where the chimney or other component penetrates to the exterior of the structure.

NOTE: Offsets from the vertical, not exceeding 45°, are allowed per Section 905(a) of the Uniform Mechanical Code (UMC). Offsets greater than 45° are considered horizontal and are also allowed, providing the horizontal run does not exceed 75% of the vertical height of the vent. Construction, clearance and termination must be in compliance with the UMC Table 9C. This installation must also comply with NFPA 211.

NOTE: Top sections of chimney must be removable to allow maximum clearance of 13.5 feet (411cm) from ground level for transportation purposes.

- 10. Burn wood only. Other types of fuels may generate poisonous gases (e.g., carbon monoxide).
- 11. If appliance burns poorly while an exhaust blower is on in home, (i.e., range hood), increase combustion air.
- Installation shall be in accordance with the Manufacturers Home & Safety Standard (HUD) CFR 3280, Part 24.

CAUTION

THE STRUCTURAL INTEGRITY OF THE MOBILE HOME FLOOR, WALL AND CEILING/ROOF MUST BE MAINTAINED

Do NOT cut through:

- Floor joist, wall, studs or ceiling trusses.
- Any supporting material that would affect the structural integrity.

WARNING

Asphyxiation Risk.

NEVER INSTALL IN A SLEEPING ROOM. Consumes oxygen in the room.

WARNING

Fire Risk.

Do Not use single wall connector pipe anywhere in a mobile home installation.

7

Reference Materials

A. Service & Maintenance Log

Date of Service	Performed By	Description of Service

Date of Service	Performed By	Description of Service
_		

Date of Service	Performed By	Description of Service

	Performed By	
-		

31M-ACC-C

Beginning Manufacturing Date: June 2017 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked

model nu	odel number and serial number when requesting service parts from your dealer or distributor.				
ITEM	DESCRIPTION	COMMENTS	PART NUMBER		
	ACCESSORIES	3			
	Blower Assembly		BK-ACC		
	Blower, Convection - Replacement Blower		812-4900	Υ	
	Blower Control Box w/Switch		SRV7000-194	Υ	
	Component Pack		7033-051		
	Snap Disc Bracket Assembly		SRV7033-036		
	Snap Disc, # 1, Convection Blower		SRV230-0470	Υ	
	Wire Harness, Blower		7033-262		
	Outside Air Kit, Floor & Rear		OAK-ACC		
	Outside Air Collar Assembly		SRV7033-039		
	Outside Air Shield		SRV33271	Υ	
	Outside Air Cover Plate Assembly		SRV7033-041	Υ	
	Upgrade, Door, Nickel		UK-DRNL		
	FASTENERS				
	Avk Rivnut Repair Kit - 1/4-20 & 3/8-16 Rivnut Tools		RIVNUT-REPAIR	Υ	
	Bolt, Hex Head, 1/4-20 x 1	Pkg of 10	25221A/10	Υ	
	Button Head 1/4-20 x .5	Pkg of 20	32328/20	Υ	
	Nut, Keps Lock, 10-32	Pkg of 40	226-0050/40	Υ	
	Nut, Keps Lock, 8-32	Pkg of 40	226-0060/40	Υ	
	Nut, Ser Flange Small 1/4-20	Pkg of 24	226-0130/24	Υ	
	Screw, Sheet Metal #8 x 1/2 S-Grip	Pkg of 40	12460/40	Υ	
	Washer, 1/4 Sae	Pkg of 24	28758/24	Υ	

CONTACT INFORMATION

Hearth & Home Technologies 352 Mountain House Road Halifax, PA 17032 Division of HNI INDUSTRIES

Please contact your Quadra-Fire dealer with any questions or concerns.

For the number of your nearest Quadra-Fire dealer
log onto www.quadrafire.com

CAUTION

DO NOT DISCARD THIS MANUAL

- Important operating and maintenance instructions included.
- Read, understand and follow these instructions for safe installation and operation.
- Leave this manual with party responsible for use and operation of this appliance.

We recommend that you record the following pertinent information for your heating appliance.

Serial Number:	Location on appliance:
Dealership purchased from:	Dealer Phone: 1() -
Notes:	

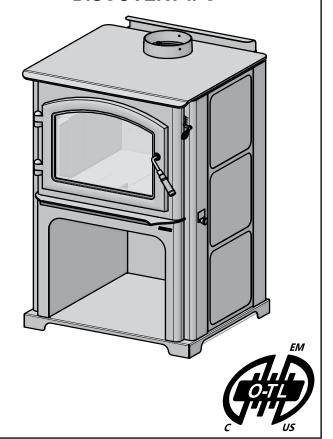
This product may be covered by one or more of the following patents: (United States) 5341794, 5263471, 6688302, 7216645, 7047962 or other U.S. and foreign patents pending.

Owner's Manual

Operation & Care

INSTALLER: Leave this manual with party responsible for use and operation.

OWNER: Retain this manual for future reference.


Contact your dealer with questions on installation, operation, or service.

NOTICE: DO NOT DISCARD THIS MANUAL

QUADRA-FIRE®

DISCOVERY II WOOD APPLIANCE AUTOMATIC COMBUSTION CONTROL (ACC)

MODEL NUMBER: DISCOVERY-II-C

Installation and service of this appliance should be performed by qualified personnel. Hearth & Home Technologies recommends HHT Factory Trained or NFI certified professionals.

WARNING

If the information in these instructions is not followed exactly, a fire could result causing property damage, personal injury, or death

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
- <u>Do not over-fire</u> If appliance or chimney connector glows, you are over-firing. Over-firing will void your warranty.
- Comply with all minimum clearances to combustibles as specified.

Failure to comply may cause house fire.

WARNING

HOT SURFACES!

Glass and other surfaces are hot during operation AND cool down.

Hot glass and appliance will cause burns.

- Do not touch glass until it is cooled
- Use leather gloves when reloading fuel
- NEVER allow children to touch glass
- · Keep children away
- CAREFULLY SUPÉRVISE children in same room as appliance.
- Alert children and adults to hazards of high temperatures
- High temperatures may ignite clothing or other flammable materials.
- Keep clothing, furniture, draperies and other flammable materials away.

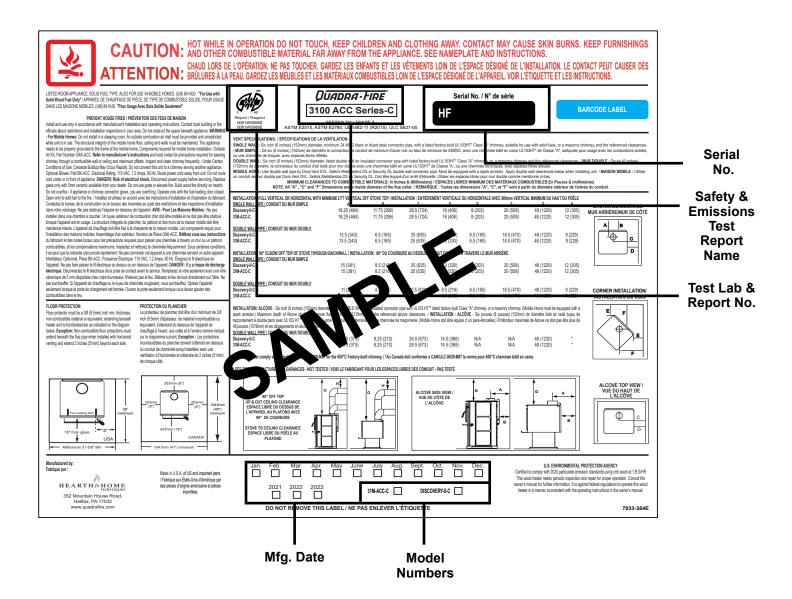
WARNING

Fire Risk.

For use with solid wood fuel only. Other fuels may over-fire and generate poisonous gases (i.e. carbon monoxide).

NOTE: To obtain a French translation of this manual, please contact your dealer or visit www.quadrafire.com

REMARQUE: Pour obtenir une traduction française de ce manuel, s'il vous plaît contacter votre revendeur ou visitez www.quadrafire.com



and Welcome to the Quadra-Fire Family!

NOTE: Clearances may only be reduced by means approved by the regulatory authority having jurisdiction

A. Sample of Serial Number / Safety Label

LOCATION: Back of appliance

Safety Alert Key:

- DANGER! Indicates a hazardous situation which, if not avoided will result in death or serious injury.
 - WARNING! Indicates a hazardous situation which, if not avoided could result in death or serious injury.
 - CAUTION! Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
 - **NOTICE:** Indicates practices which may cause damage to the appliance or to property.

TABLE OF CONTENTS

A. Sample of Serial Number / Safety Label	2 3 Maintenance and Service
B. Warranty Policy	A. Quick Neierence Maintenance Guide
A. Appliance Safety Certification	4 Troubleshooting Guide
→ B. Appliance Emissions Certification	o con noo nan nopiacomoni
C. BTU & Efficiency Specifications. D. Glass Specifications. E. Mobile Home Approved F. Sleeping Room. G. California - Prop65.	A. Glass
2 Operating Instructions	F. Decorative Panel Removal & Installation
A. Over-Firing Your Appliance	
B. Wood Selection & Storage	6 Reference Materials
C. Burning Process	A. Service and Maintenance Log
K. Negative Pressure	
L. Frequently Asked Questions	3

Quadra-Fire is a registered trademark of Hearth & Home Technologies.

B. Warranty Policy

Hearth & Home Technologies LLC LIMITED LIFETIME WARRANTY

Hearth & Home Technologies LLC ("HHT") extends the following warranty for HHT gas, wood, pellet and electric hearth appliances (each a "Product" and collectively, the "Product(s)") and certain component parts set forth in the table below ("Component Part(s)") that are purchased from a HHT authorized dealer or distributor.

WARRANTY COVERAGE:

HHT warrants that the Products and their Component Parts will be free from defects in materials and workmanship for the applicable period of Warranty coverage set forth in the table below ("Warranty Period"). If a Product or Component Parts are found to be defective in materials or workmanship during the applicable Warranty Period, HHT will, at its option, repair the applicable Component Part(s), replace the applicable Component Part(s), or refund the purchase price of the applicable Product(s). The maximum amount recoverable under this Warranty is limited to the purchase price of the Product. This Warranty is transferable from the original purchaser to subsequent owners, but the Warranty Period will not be extended in duration or expanded in coverage for any such transfer. This Warranty is subject to conditions, exclusions, and limitations as described below.

WARRANTY PERIOD:

Warranty coverage begins at the date of installation. In the case of new home constructions, Warranty coverage begins on the date of first occupancy of the dwelling or six months after the sale of the Product(s) by an independent, authorized HHT dealer or distributor, whichever occurs earlier. However, the Warranty coverage shall commence no later than 24 months following the date of Product shipment from HHT, regardless of the installation or occupancy date.

The term "Lifetime" in the table below is defined as: 20 years from the beginning date of warranty coverage for gas appliances, and 10 years from the beginning date of warranty coverage for wood and pellet appliances. These time periods reflect the minimum expected useful lives of the designated Component Parts under normal operating conditions.

Warranty	Period	HHT Manufactured Appliances and Venting					
Component Parts	Labor	Gas	Pellet	Wood	Electric	Venting	Component Parts Covered by this Warranty
1 Ye	ear	х	х	х		х	All parts including handles, external enameled components and other material except as covered by Warranty Conditions, Warranty Exclusions, and Warranty Limitations listed
2 Ye	ars				х		All parts except as covered by Warranty Conditions, Warranty Exclusions, and Warranty Limitations listed
							Igniters, Auger Motors, Electronic Components, and
			Х	Х			Glass
2 yea	ars	x					Electrical components limited to modules, remotes/wall switches, valves, pilots, blowers, junction boxes, wire harnesses, transformers and lights (excluding light bulbs)
	х х		Х			Molded Refractory Panels, Glass Liners	
3 уеа	ars		х				Firepots, burnpots, mechanical feeders/auger assemblies
5 years	1 year	х					Vent Free Burners, Vent Free Logs
.,	o your - 1 your		х	Х			Castings, Medallions and Baffles
6 years	3 years			х			Catalysts
7 years	3 years		х	х			Manifold tubes, HHT Chimney and Terminations
10 years	1 year	х					Burners, logs and refractory
Limited Lifetime	3 years	х	х	х			Firebox and heat exchanger, FlexBurn® System (engine, inner cover, access cover and fireback)
1 Year	None	х	х	Х	х	х	All purchased replacement parts

4021-645L 10/20 Page 1 of 2

WARRANTY CONDITIONS:

- Because HHT cannot control the quality of any Products sold by unauthorized sellers, this Warranty only covers Products that are
 purchased through an HHT authorized dealer or distributor unless otherwise prohibited by law; a list of HHT authorized dealers
 is available on the HHT branded websites.
- This Warranty is only valid while the applicable Product remains at the site of original installation.
- This Warranty is only valid in the country in which the HHT authorized dealer or distributor that sold the applicable Product is authorized to sell applicable Product.
- Contact your installing distributor or dealer for Warranty service. If the installing dealer or distributor is unable to provide necessary parts, contact the nearest HHT authorized dealer or supplier. Additional service fees may apply if you are seeking Warranty service from a dealer other than the dealer from whom you originally purchased the applicable Product.
- No HHT consumer should bear cost of warranty service or costs incurred while servicing warranty claims (i.e., travel, gas, or mileage) when the service is performed within the terms of this Warranty. Check with your dealer or distributor in advance for any costs to you when arranging a warranty call. Travel and shipping charges for parts are not covered by this Warranty.

WARRANTY EXCLUSIONS:

This Warranty does not cover the following:

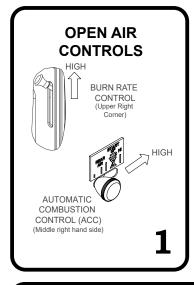
- Changes in surface finishes as a result of normal use. As a heating appliance, some changes in color of interior and exterior surface finishes may occur. This is not a flaw and is not covered under the Warranty.
- Damage to printed, plated, or enameled surfaces caused by fingerprints, accidents, misuse, scratches, melted items or other
 external sources and residues left on the plated surfaces from the use of abrasive cleaners or polishes.
- Repair or replacement of parts that are subject to normal wear and tear during the Warranty Period are not covered. These parts include: paint, wood and pellet gaskets, firebricks, grates, flame guides, batteries and the discoloration of glass.
- Minor expansion, contraction, or movement of certain parts causing noise. These conditions are normal and complaints related to this noise are not covered by this Warranty.
- Damages resulting from: (1) failure to install, operate, or maintain the applicable Product in accordance with the installation instructions, operating instructions, and listing agent identification label furnished with the applicable Product; (2) failure to install the applicable Product in accordance with local building codes; (3) shipping or improper handling; (4) improper operation, abuse, misuse, continued operation with damaged, corroded or failed components, accident, or improperly/incorrectly performed repairs; (5) environmental conditions, inadequate ventilation, negative pressure, or drafting caused by tightly sealed constructions, insufficient make-up air supply, or handling devices such as exhaust fans or forced air furnaces or other such causes; (6) use of fuels other than those specified in the operation instructions; (7) installation or use of components not supplied with the applicable Product or any other components not expressly authorized and approved by HHT; (8) modification of the appliance not expressly authorized and approved by HHT in writing; and/or (9) interruptions or fluctuations of electrical power supply to the applicable Product.
- Non-HHT venting components, hearth connections or other accessories used in conjunction with the applicable Product.
- Any part of a pre-existing fireplace system in which an insert or a decorative gas applicable Product is installed.
- HHT's obligation under this Warranty does not extend to the Product's capability to heat the desired space. Information is provided
 to assist the consumer and the dealer in selecting the proper Product for the application. Consideration must be given to the
 Product location and configuration, environmental conditions, insulation and air tightness of the structure.

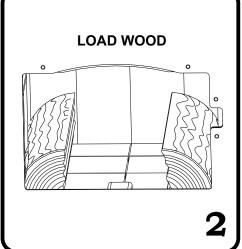
This warranty is void if:

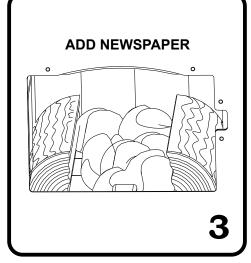
- The applicable Product has been over-fired, operated in atmospheres contaminated by chlorine, fluorine, or other damaging chemicals. Over-firing can be identified by, but not limited to, warped plates or tubes, deformation/warping of interior cast iron structure or components, rust colored cast iron, bubbling, cracking and discoloration of steel or enamel finishes.
- The applicable Product is subjected to prolonged periods of dampness or condensation.
- There is any damage to the applicable Product due to water or weather damage which is the result of, but not limited to, improper chimney or venting installation.

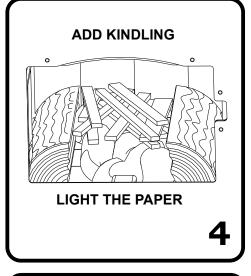
LIMITATIONS OF REMEDIES AND LIABILITY:

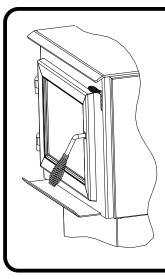
• EXCEPT TO THE EXTENT PROVIDED BY LAW, HHT MAKES NO EXPRESS WARRANTIES OTHER THAN THE WARRANTY SPECIFIED HEREIN. The owner's exclusive remedy and HHT's sole obligation under this Warranty or in contract, tort or otherwise, shall be limited to replacement of the Component Part(s), repair of the Component Part(s), or refund of the original purchase price of the applicable Product(s), as specified above; provided, however, that (i) if HHT is unable to provide replacement of the Component Part(s) and repair of the Component Part(s) is not commercially practicable or cannot be timely made, or (ii) the customer is willing to accept a refund of the purchase price of the applicable Product. In no event will HHT be liable for any incidental or consequential damages caused by defects in the applicable Product. Some States do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This Warranty gives you specific legal rights and you may also have other rights which vary from State to State. THE DURATION OF ANY IMPLIED WARRANTY IS LIMITED TO DURATION OF THE EXPRESSED WARRANTY SPECIFIED ABOVE FOR THE APPLICABLE PRODUCT. Some States do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you.


4021-645L 10/20 Page 2 of 2

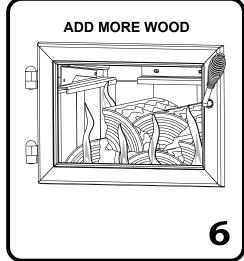

C. Quick Start Guide

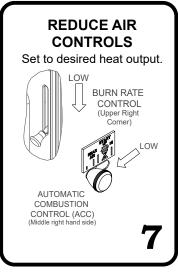

NOTE: These are generic drawings and may not represent your specific model.


ITEMS NEEDED FOR FIRST FIRE:


10 Pieces of Newspaper, 10-20 Pieces of Dry Kindling and Few Pieces of Dry Split Wood.

Warning! Risk of Fire.


Close and securely latch the door after the fire has started, and after refueling, to prevent:


- Spillage of smoke, flame and carbon monoxide
- Spillage of sparks, coals, and logs
- Over firing

DO NOT leave the appliance unattended with the door open.

Starting a fire may not require an open door for draft. The air control should supply adequate draft.

5

The appliance is ready for normal operation.

Listing and Code Approvals

A. Appliance Safety Certification

Model Number:	DISCOVERY-II-C
Laboratory:	OMNI Test Laboratories, Inc.
Report Number:	
Туре:	Listed Room Appliance, Solid Fuel Type
Standard:	UL 1482-11 (R2015) and ULC S627-00 and (UM) 84-HUD. Mobile Home Approved.

B. Appliance Emissions Certification

Model Number:	DISCOVERY-II-C		
Laboratory:	OMNI Test Laboratories, Inc.		
Report Number:	0061WS066E		
Standard: ASTM E2515, ASTM E2780			
Can be found at:			
www.quadrafire.com/about-us/epa-certification			

The DISCOVERY-II-C is Certified to comply with 2020 crib wood particulate emission standards.

This wood appliance needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood appliance in a manner inconsistent with operating instructions in this manual.

NOTE: This installation must conform with local codes. In the absence of local codes you must comply with (UM) 84-HUD and NFPA211 in the U.S.A. and CAN/CSA-B365 Installation Codes in Canada.

C. BTU & Efficiency Specifications

EPA Certification Number:	Number: 86-17
EPA Certified Emissions:	1.9 grams per hour
*LHV Tested Efficiency:	78.3%
**HHV Tested Efficiency:	72.5%
***EPA BTU Output:	13,900 to 29,100 / hr
****Peak BTU/Hour Output:	51,000
Vent Size:	6 inches
Firebox Size:	1.89 cubic feet
Recommended Log Length:	16 inches
Fuel	Seasoned Cordwood (20% moisture)

- * Weighted average LHV (Low Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. LHV assumes the moisture is already in a vapor state so there is no loss in energy to vaporize.
- ** Weighted average HHV (High Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. HHV includes the energy required to vaporize the water in the fuel.
- *** A range of BTU outputs calculated using HHV Efficiency and the burn rates from the EPA tests, using Douglas Fir dimensional lumber.
- **** A peak BTU out of the appliance calculated using the maximum first hour burn rate from the High EPA Test and BTU content of seasoned cordwood (8600) times the efficiency

D. Glass Specifications

This appliance is equipped with 5mm ceramic glass. Replace glass only with 5mm ceramic glass. Please contact your dealer for replacement glass.

E. Mobile Home Approved

- This appliance is approved for mobile home installations when not installed in a sleeping room and when an outside combustion air inlet is provided.
- The structural integrity of the mobile home floor, ceiling, and walls must be maintained.
- The appliance must be properly grounded to the frame of the mobile home with #8 copper ground wire, and chimney must be listed to UL103 HT or a listed UL-1777 full length six inch (152mm) diameter liner must be used.
- Outside Air Kit, part OAK-ACC must be installed in a mobile home installation.

F. Sleeping Room

When installed in a sleeping room it is recommended that a smoke and/or CO alarm be installed in the bedroom. The size of the room must be at least 50ft³ per 1,000 Btu/hr stove input, if the stove exceeds the room size, outside air must be installed.

G. California - Prop65

WARNING

This product and the fuels used to operate this product (wood), and the products of combustion of such fuels, can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, and carbon monoxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to: WWW.P65Warnings.ca.gov

WARNING

Fire Risk.

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage.

For assistance or additional information, consult a qualified installer, service agency or your dealer.

NOTE: Hearth & Home Technologies, manufacturer of this appliance, reserves the right to alter its products, their specifications and/or price without notice.

User Guide

2 Operating Instructions

A. Over-Firing Your Appliance

WARNING

Fire Risk. Do not over-fire.

Over-firing may ignite creosote or will damage the appliance and chimney.

To prevent over-firing your appliance, DO NOT:

- Use flammable liquids
- Overload with wood
- Burn trash or large amounts of scrap lumber
- Permit too much air to the fire

Visit www.quadrafire.com/shopping-tools/videos to view product and use & care videos.

1. Symptoms of Over-Firing

Symptoms of over-firing may include one or more of the following:

- Chimney connector or appliance glowing
- Roaring, rumbling noises
- Loud cracking or banging sounds
- Metal warping
- Chimney fire

What To Do if Your Appliance is Over-Firing

- Immediately close the door and air controls to reduce air supply to the fire.
- If you suspect a chimney fire, call the fire department and evacuate your house.
- Contact your local chimney professional and have your appliance and appliance pipe inspected for any damage.
- Do not use your appliance until the chimney professional informs you it is safe to do so.

Hearth & Home Technologies WILL NOT warranty appliances that exhibit evidence of over-firing. Evidence of over-firing includes, but is not limited to:

- Warped air tube
- Deteriorated refractory brick retainers
- Deteriorated baffle and other interior components

B. Wood Selection & Storage

Burn only dry seasoned wood. Store wood under cover, out of the rain and snow. Dry and well-seasoned wood will not only minimize the chance of creosote formation, but will give you the most efficient fire. Even dry wood contains at least 15% moisture by weight, and should be burned hot enough to keep the chimney hot for as long as it takes to dry the wood out - about one hour. It is a waste of energy to burn unseasoned wood of any kind.

Dead wood lying on the forest floor should be considered wet, and requires full seasoning time. Standing dead wood can be considered to be about 2/3 seasoned. To tell if wood is dry enough to burn, check the ends of the logs. If there are cracks radiating in all directions from the center, it is dry. If your wood sizzles in the fire, even though the surface is dry, it may not be fully cured.

Splitting wood before it is stored reduces drying time. Wood should be stacked so that both ends of each piece are exposed to air, since more drying occurs through the cut ends than the sides. This is true even with wood that has been split. Store wood under cover, such as in a shed, or covered with a tarp, plastic, tar paper, sheets of scrap plywood, etc., as uncovered wood can absorb water from rain or snow, delaying the seasoning process.

C. Burning Process

In recent years there has been an increasing concern about air quality. Much of the blame for poor air quality has been placed on the burning of wood for home heating. In order to improve the situation, we at Quadra-Fire have developed cleaner-burning wood appliances that surpass the requirements for emissions established by our governing agencies. These wood appliances, like any other appliances, must be properly operated in order to insure that they perform the way they are designed to perform. Improper operation can turn most any wood appliance into a smoldering environmental hazard.

1. Kindling or First Stage

It helps to know a little about the actual process of burning in order to understand what goes on inside a appliance. The first stage of burning is called the kindling stage. In this stage, the wood is heated to a temperature high enough to evaporate the moisture which is present in all wood. The wood will reach the boiling point of water (212°F) and will not get any hotter until the water is evaporated. This process takes heat from the coals and tends to cool the appliance.

Fire requires three things to burn - fuel, air and heat. So, if heat is robbed from the appliance during the drying stage, the new load of wood has reduced the chances for a good clean burn. For this reason, it is always best to burn dry, seasoned firewood. When the wood isn't dry, you must open the air controls and burn at a high burn setting for a longer time to start it burning. The heat generated from the fire should be warming your home and establishing the flue draft, not evaporating the moisture out of wet, unseasoned wood, resulting in wasted heat.

2. Second Stage

The next stage of burning, the secondary stage, is the period when the wood gives off flammable gases which burn above the fuel with bright flames. During this stage of burning it is very important that the flames be maintained and not allowed to go out. This will ensure the cleanest possible fire. If the flames tend to go out, it is set too low for your burning conditions. The air control located at the upper right hand corner is used to adjust for burn rates. This is called the <u>Burn Rate Air Control</u> (Figure 10.1).

3. Final Stage

The final stage of burning is the charcoal stage. This occurs when the flammable gases have been mostly burned and only charcoal remains. This is a naturally clean portion of the burn. The coals burn with hot blue flames.

It is very important to reload your appliance while enough lively hot coals remain in order to provide the amount of heat needed to dry and rekindle the next load of wood. It is best to open the Burn Rate Air and Start-Up Air Controls before reloading. This livens up the coal bed and reduces excessive emissions (opacity/smoke). Open door slowly so that ash or smoke does not exit appliance through opening. You should also break up any large chunks and distribute the coals so that the new wood is laid on hot coals.

Air quality is important to all of us, and if we choose to use wood to heat our homes we should do so responsibly. To do this we need to learn to burn our appliances in the cleanest way possible. Doing this will allow us to continue using our wood appliances for many years to come.

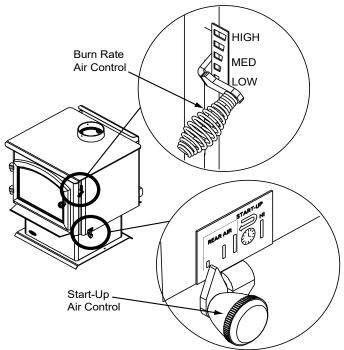


Figure 10.1

D. Air Controls

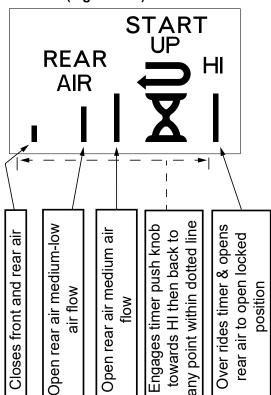
Users will need to find their preferred setting between high and low based on desired heat output, installation configuration, and fuel type.

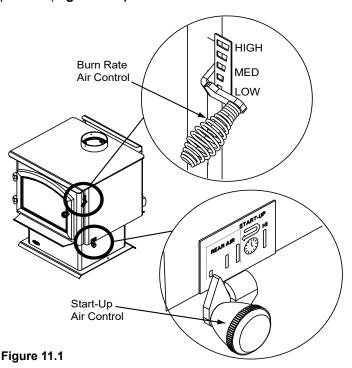
1. Burn Rate Air Control

This air supply enters at the upper front of the firebox, near the top of the glass door. This preheated air supplies the necessary fresh oxygen to mix with the unburned gases, helping to create second, third and fourth combustions. This air is regulated by the Burn Rate Air Control. When the control is moved all the way up it is on the High setting and when moved all the way down it is on the Low setting (Figure 10.1).

2. Automatic Combustion Control System (ACC)

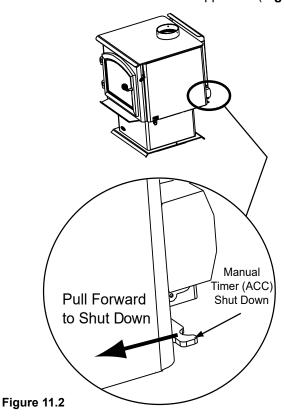
To engage the Automatic Combustion Control (ACC) timer system push the lever towards the back of the appliance to the "HI" position, then pull forwards towards the front of the appliance until the knob stops. The timer will slowly close in about 25 minutes. Use this feature when reloading fuel or if you want more air supplied to the fire (Figure 10.2).




Figure 10.2

E. Using Burn Rate Air Control & ACC System

Injury Risk. Gloves recommended


1. Start up and Reloading Fuel

Open both Burn Rate Air Control and ACC systems fully. To do this with the Burn Rate Air Controls push spring handle up to high. For the ACC timer system push knob towards back of appliance until the knob is located under the high position (**Figure 11.1**).

3. Manual Timer Over-Ride

If you need to shut the ACC system off before it goes through the cycle of shutting itself off; 25 minutes, reach towards the back of the appliance on the right side and pull the lever towards the front of the appliance (**Figure 11.2**).

2. Maximize Heat with The ACC System

To maximize heat output with the ACC timer System or also known as high burn push the ACC Air Control lever towards the back of the appliance and leave. This combined with having the main burn rate control lever pushed up will deliver the most amount of air needed to achieve the highest amount of heat output (**Figure 11.1**).

F. Burn Rates and Operating Efficiency For maximum operating efficiency

This wood appliance has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this wood appliance in a manner inconsistent with operating instructions in this manual.

Burn dry, well-seasoned wood.

Burn Rates

1. Low burn setting:

- Burn Rate Air Control spring handle up to high position for 5 minutes.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops (Figure 10.1 on page 10).
- At that point close the Burn Rate Air Control by moving the spring handle to the low setting.

2. Medium low burn setting:

- Burn Rate Air Control spring handle up to high position for 5 minutes.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops.
- At that point move the Burn Rate Air Control spring handle to 1/8"-1/2" from the low setting.

3. Medium high burn setting:

- Burn Rate Air Control spring handle up to high position.
- Then activate the ACC timer system by pushing the knob all the way back toward the appliance to "HI" then pull forwards towards the front of the appliance until the knob stops.
- At that point move the Burn Rate Air Control spring handle to 1/2" – high.

4. High burn setting:

- Burn Rate Air Control spring handle up to high position
- Also activate ACC timer system knob pushed back to the "HI" position.

NOTE: If using the optional blower, for burn rate settings 1-3, the blower shall be off for the first 30 minutes and then be operated in the high position at 30 minutes. For high burn setting, blower may continue to be on full after the loading of the fuel.

NOTE: The above information is provided as a guideline only. Altitude and other circumstances may require control adjustments to achieve the desired burn rates.

NOTE: Operate appliance on High Burn 45 minutes a day to help keep flue/chimney clean.

WARNING

Risk of Fire.

When set on High Burn Rate and over-riding the Automatic Combustion Control system an over fire situation can occur and may result in a chimney fire.

Over firing will void the appliance warranty.

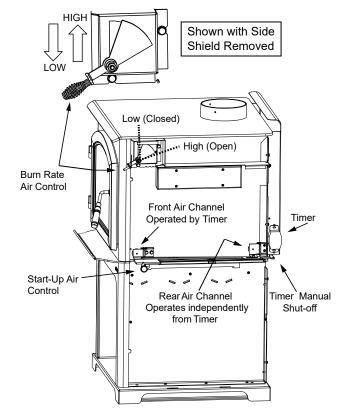


Figure 12.1

After activating the timer (ACC), if the control is placed within the rear air section on the label it will allow rear air to enter the firebox. This will not interfere with the timer gradually closing the front air channel in 25 minutes. If control is set on "HI" it over-rides the timer (ACC).

G. Building A Fire

Before lighting your first fire in the appliance:

NOTE: The special high temperature paint that your appliance is finished with will cure as your appliance heats. You will notice an odor and perhaps see some vapor rise from the appliance surface; this is normal. We recommend that you open a window until the odor dissipates and paint is cured.

- 1. Confirm the baffle is correctly positioned. It should be even with the front tube and resting on all tubes (Figure 13.1 and Figure 13.2).
- 2. Remove all labels from glass and inside of appliance.

There are many ways to build a fire. The basic principle is to light easily-ignitable tinder or paper, which ignites the fast burning kindling, which in turn ignites the slow-burning firewood. Here is one method that works well:

- 1. Open the Burn Rate Air and ACC Controls fully (Refer to **Start-Up Guide** on **page 6**).
- 2. Place several wads of crushed paper on the firebox floor. Heating the flue with slightly crumpled newspaper before adding kindling keeps smoke to a minimum.
- 3. Lay small dry sticks of kindling on top of the paper.
- Make sure that no matches or other combustibles are in the immediate area of the appliance. Be sure the room is adequately ventilated and the flue unobstructed.
- 5. Light the paper in the appliance. NEVER light or rekindle fire with kerosene, gasoline, or charcoal lighter fluid; the results can be fatal.
- 6. Once the kindling is burning quickly, add several full-length logs 3 inches (76mm) or 4 inches (102mm) in diameter. Be careful not to smother the fire. Stack the pieces of wood carefully; near enough to keep each other hot, but far enough away from each other to allow adequate air flow between them.
- 7. Set the Burn Rate Air Control and activate the ACC timer system.
- 8. When ready to reload, It is best to fully open both the Burn Rate Air and Start-up Air Controls before reloading. This livens up the coal bed and reduces excessive emissions (opacity/smoke). Open door slowly so that ash or smoke does not exit appliance through opening. Large logs burn slowly, holding a fire longer. Small logs burn fast and hot, giving quick heat.
- 9. As long as there are hot coals, repeating steps 6 through 8 will maintain a continuous fire.

WARNING

Fire Risk.

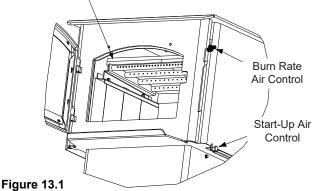
- Do not leave the fire unattended when the door is unlatched or when using the fire screen.
- Unstable firewood could fall out of the firebox creating a fire hazard to your home.

NOTE:

- · Build fire on brick firebox floor.
- Do NOT use grates, andirons or other methods to support fuel. It will adversely affect emissions.

WARNING

Fire Risk.


Do NOT store wood:

- Closer than required clearances to combustibles to appliance
- Within space required for loading or ash removal.

Do NOT operate appliance:

- With appliance door open.
- With ash removal system door open.

Baffle Board even with front tube & resting on all tubes

Ceramic Blanket on Top

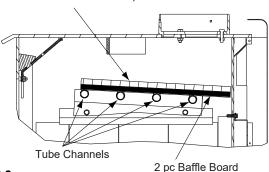


Figure 13.2

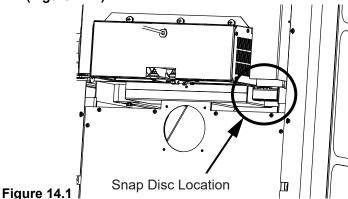
Fire Risk.

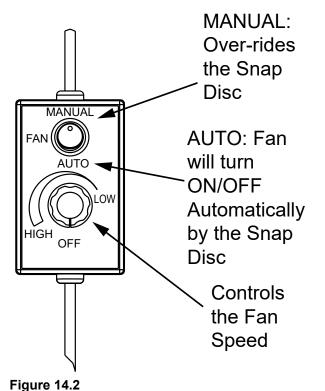
- Do NOT burn wet or green wood.
- Store wood in dry location.
- Stack wood so both ends are exposed to air.

Wet, unseasoned wood can cause accumulation of creosote.

H. Blower Operating Instructions

NOTE: If your Quadra-Fire wood appliance is equipped with an optional blower, you should follow these guidelines:


1. Initial (cold) start-up and all Burn Settings


The blower can be plugged in and turned on right away. The blower fan is turned on and off by a snap disc. When your appliance has reached a certain temperature the blower will turn on and when your appliance has cooled down to a certain temperature it will turn off. Switch on blower control must be set to auto for this feature to work.

2. The blower is equipped with a speed control. Adjust the fan speed by turning the speed control clockwise to "Low" or counterclockwise to "High".

3. Snap Disc Location

If you find the blower coming on and off at undesirable temperatures, relocate the snap disc to another location in the designated zone on the back of the appliance (**Figure 14.1**). There is a manual override switch to deactivate the snap disc, if necessary (**Figure 14.2**).

I. Opacity (Smoke)

This is the measure of how cleanly your appliance is burning. Opacity is measured in percent; 100% opacity is when an object is totally obscured by the smoke column from a chimney, and 0% opacity means that no smoke column can be seen. As you become familiar with your appliance, you should periodically check the opacity. This will allow you to know how to burn as nearly smoke-free as possible (goal of 0% opacity).

WARNING

Fire Risk.

- DO NOT BURN GARBAGE OR FLAMMABLE FLUIDS SUCH AS GASOLINE, NAPHTHA OR ENGINE OIL.
- Do NOT burn treated wood or wood with salt (driftwood).
- May generate carbon monoxide if burn material other than wood.

May result in illness or possible death.

WARNING

Fire Risk.

Keep combustible materials, gasoline and other flammable vapors and liquids clear of appliance.

- Do NOT store flammable materials in the appliance's vicinity.
- DÓ NOT USE GASOLINE, LANTERN FUEL, KEROSENE, CHARCOAL LIGHTER FLUID OR SIMILAR LIQUIDS TO START OR "FRESHEN UP" A FIRE IN THIS APPLIANCE.
- Keep all such liquids well away from the appliance while it is in use.
- Combustible materials may ignite.

CAUTION

When burning your first fire, you will experience smoke and odor from the appliance resulting from the curing of paint and burning off of any oils remaining from manufacturing.

OPEN WINDOWS DURING INITIAL BURN TO DISSIPATE SMOKE AND ODORS!

- Odors may be irritating to sensitive individuals.
- Smoke detectors may activate.

J. Clear Space

NOTE: Do NOT place combustible objects within 4 ft (1.2 m) of the front of appliance (**Figure 15.1**).

Mantel:

Avoid placing candles and other heat-sensitive objects on mantel or hearth. Heat may damage these objects.

WARNING

Do NOT place combustible objects in front of the appliance. High temperatures may ignite clothing, furniture or draperies.

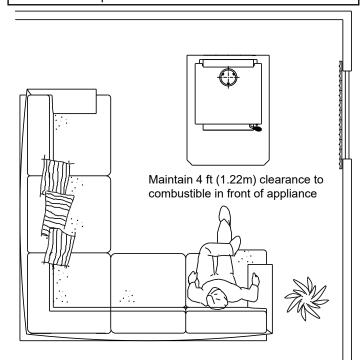


Figure 15.1

K. Negative Pressure

WARNING

Asphyxiation Risk.

- Negative pressure can cause spillage of combustion fumes, soot and carbon monoxide.
- Appliance needs to draft properly for safety.

Negative pressure results from the imbalance of air available for the appliance to operate properly. It can be strongest in lower levels of the house.

Causes include:

- Exhaust fans (kitchen, bath, etc.)
- Range hoods
- Combustion air requirements for furnaces, water appliances and other combustion appliances
- Clothes dryers
- Location of return-air vents to furnace or air conditioning
- Imbalances of the HVAC air handling system
- Upper level air leaks such as:
 - Recessed lighting
 - Attic hatch
 - Duct leaks

To minimize the effects of negative air pressure:

- Install the outside air kit with the intake facing prevailing winds during the heating season
- Ensure adequate outdoor air for all combustion appliances and exhaust equipment
- Ensure furnace and air conditioning return vents are not located in the immediate vicinity of the appliance
- Avoid installing the appliance near doors, walkways or small isolated spaces
- Recessed lighting should be a "sealed can" design
- Attic hatches weather stripped or sealed
- Attic mounted duct work and air handler joints and seams taped or sealed

L. Frequently Asked Questions

ISSUES	SOLUTIONS
Odor from appliance	When first operated, this appliance may release an odor for the first several hours. This is caused by the curing of the paint and the burning off of any oils remaining from manufacturing.
Metallic noise	Noise is caused by metal expanding and contracting as it heats up and cools down, similar to the sound produced by a furnace or heating duct. This noise does not affect the operation or longevity of the appliance.
Whirring sound	If the optional blower has been installed, the blower produces a whirring sound which increases in volume as the speed is increased.

CONTACT YOUR DEALER for additional information regarding operation and troubleshooting.

Visit www.quadrafire.com to find a dealer.

Table 16.1

WARNING

Fire Risk.

- DO NOT BURN GARBAGE OR FLAMMABLE FLUIDS SUCH AS GASOLINE, NAPHTHA OR ENGINE OIL.
- Do NOT burn treated wood or wood with salt (driftwood).
- May generate carbon monoxide if burn material other than wood.

May result in illness or possible death.

WARNING

Fire Risk.

Keep combustible materials, gasoline and other flammable vapors and liquids clear of appliance.

- Do NOT store flammable materials in the appliance's vicinity.
- DO NOT USE GASOLINE, LANTERN FUEL, KEROSENE, CHARCOAL LIGHTER FLUID OR SIMILAR LIQUIDS TO START OR "FRESHEN UP" A FIRE IN THIS APPLIANCE.
- Keep all such liquids well away from the appliance while it is in use.
- Combustible materials may ignite.

Maintenance and Service

A. Quick Reference Maintenance Guide

When properly maintained, your fireplace will give you many years of trouble-free service. Contact your dealer to answer questions regarding proper operation, troubleshooting and service for your appliance. Visit www.quadrafire.com/owner-resources to view basic troubleshooting, FAQs, use & care videos.

CAUTION

Allow the appliance to completely cool down before performing any cleaning or maintenance. Start the first inspection after the first 2 months of use, or if performance changes, and adjust your schedule accordingly. Maintenance is required for safe operation and must be performed to maintain your warranty.

	FREQUENCY	TASK
Baffle & Blanket Baffle Retainer Bracket Ceramic Blanket Back of Firebox Baffle Board	MONTHLY or after every one (1) cord of wood	Baffle and blanket placement is critical to heat output, efficiency and overall life of the appliance. Make sure the baffle is pushed all of the way to the back of the firebox and the blanket is laying flat. Inspect baffle for cracks.
Optional Blower	YEARLY or after every four (4) cords of wood	Vacuum the blower impellers.
Chimney System	EVERY TWO MONTHS or after every four (4) cords of wood	The chimney and chimney cap must be inspected for soot and creosote every two months during the burn season or more frequency if chimney exceeds or is under 14-16 ft (4.3m-4.8m) measured from bottom of appliance. This will prevent pipe blockage, poor draft, and chimney fires. Always burn dry wood to help prevent cap blockage and creosote build-up.
Firebrick & Ash Removal	WEEKLY or after every 25 loads of wood	Ashes must be cool before you can dispose of the ashes in a non-combustible container. Firebrick is designed to protect your firebox. After ashes are removed, inspect the firebrick and replace firebricks that are crumbling, cracked or broken.
Door & Glass Assemblies	WEEKLY or after every 25 loads of wood	Keep door and glass gasket in good shape to maintain good burn. To test: place a dollar bill between the appliance and door and then shut the door. If you can pull the dollar out, remove one washer from door handle behind latch cam and try again. If you can still pull it out, replace the door gasket. Check the glass frame for loose screws to prevent air leakage. Check glass for cracks.
Door Handles	WEEKLY or after every 25 loads of wood	Check the door latch for proper adjustment. This is very important especially after the door rope has formed to the appliance face. Check door handle for smooth cam operation.

These are generic drawings and may not represent your model.

B. General Maintenance

1. Creosote (Chimney) Cleaning

- Frequency: Every 2 months during heating season or as recommended by a certified chimney sweep; more frequently if chimney exceeds or is under 14-16 ft. (measured from bottom of appliance)
- By: Certified Chimney Sweep

Remove all ash from the firebox and extinguish all hot embers before disposal. Allow the appliance to cool completely. Disconnect flue pipe or remove baffle and ceramic blanket from appliance before cleaning chimney. Otherwise residue can pile up on top of the baffle and ceramic blanket and the appliance will not work properly. (See **Baffle Removal** on <u>page 24</u>). Close the door tightly. The creosote or soot should be removed with a brush specifically designed for the type of chimney in use. Clean out fallen ashes from the firebox.

It is also recommended that before each heating season the entire system be professionally inspected, cleaned and repaired if necessary.

Inspection:

Inspect the system at the appliance connection and at the chimney top. Cooler surfaces tend to build creosote deposits quicker, so it is important to check the chimney from the top as well as from the bottom.

Formation and Need For Removal:

When wood is burned slowly, it produces tar and other organic vapors which combine with expelled moisture to form creosote.

The creosote vapors condense in the relatively cool chimney flue of a newly-started or a slow-burning fire. As a result, creosote residue accumulates on the flue lining. When ignited, this creosote creates an extremely hot fire which may damage the chimney or even destroy the house.

The chimney connector and chimney should be inspected once every 2 months during the heating season to determine if a creosote or soot buildup has occurred. If creosote or soot has accumulated, it should be removed to reduce the risk of a chimney fire.

WARNING

Fire Risk.

Prevent creosote buildup.

- Inspect chimney connector and chimney once every two months during heating season.
- Remove creosote to reduce risk of chimney fire.
- Ignited creosote is extremely HOT.

WARNING

Fire Risk.

Do not use chimney cleaners or flame colorants in your appliance. Will corrode chimney pipe.

2. <u>Disposal of Ashes</u>

- **Frequency:** When ash is within 1-3/4 in. (44mm) of firebox lip
- **By:** Homeowner

WARNING

Fire Risk.

Ashes could contain hot embers.

Ashes should be placed in a metal container with a tight fitting lid. The closed container of ashes should be placed on a non-combustible floor or on the ground, well away from all combustible materials, pending final disposal. If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have thoroughly cooled.

WARNING

Fire Risk. Disposal of Ashes

- Ashes should be placed in metal container with tight fitting lid.
- Do not place metal container on combustible surface.
- Ashes should be retained in closed container until all cinders have thoroughly cooled.

3. Appliance Inspection

- Frequency: Every 2 months at the same time the chimney and chimney connector are inspected.
- By: Homeowner

Check for:

- Cracks in glass
- Door handle smooth cam operation
- Baffle and ceramic blanket correct placement
- Baffle for warp-age
- Firebrick for cracks, broken or crumbly
- Door gasket (Dollar bill test): Place a dollar bill between the stove and the door and then shut the door. If you can pull the dollar bill out, replace the door gasket.
- Glass frame for loose screws

- 4. Glass Cleaning
- Frequency: As desired
- By: Homeowner

CAUTION

Handle glass assembly with care. Glass is breakable.

- Avoid striking, scratching or slamming glass
- Avoid abrasive cleaners
- Do not clean glass while it is hot

Clean glass with a non-abrasive glass cleaner. Abrasive cleaners may scratch and cause glass to crack. If the deposits on the glass are not very heavy, normal glass cleaners work well. Heavier deposits may be removed by using a damp cloth dipped in wood ashes or by using a commercially available oven cleaner.

After using an oven cleaner, it is advisable to remove any residue with a glass cleaner or soap and water. Oven cleaner left on during the next firing can permanently stain the glass and damage the finish on metal surfaces.

A portion of the combustion air entering the firebox is deflected down over the inside of the door glass. This air flow "washes" the glass, helping to keep smoke from adhering to its surface.

When operated at a low burn rate, less air will be flowing over the glass and the smokey, relatively cool condition of a low fire will cause the glass to become coated.

Operating the appliance with the Burn Rate Air Control and Start-Up Air Control all the way open for 30-45 minutes should remove the built up coating.

CAUTION

Do not use polishes with abrasives. It will scratch surfaces.

5. Cleaning Plated Surfaces

- Frequency: Prior to first burn and then as desired
- By: Homeowner

Clean all the fingerprints and oils from plated surfaces **BEFORE** firing the appliance for the first time. If not cleaned properly before lighting your first fire, the oils can cause permanent markings on the plating.

After the plating is cured, the oils will not affect the finish and little maintenance is required. Wipe clean as needed.

CAUTION

Do not use polishes with abrasives. It will scratch plated surfaces.

6. Inspect Firebrick

- Frequency: After each ash removal
- By: Homeowner

Replace the firebrick if they become crumbly and/or if there is a 1/4 inch (6.35mm) gap between the bricks.

The firebox is lined with firebrick, which has exceptional insulating properties. Do not use a grate; simply build a fire on the firebox floor. Do not operate appliance without firebrick.

- 1. After the coals have completely cooled, remove all old brick and ash from unit and vacuum firebox.
- 2. Remove new brick set from box and lay out to the diagram shown in the instructions that come with the brick set or refer to the diagram on the service parts list at the end of this manual.
- 3. Lay bottom bricks in unit.
- 4. Install rear bricks on the top of the bottom bricks. Slide top of bricks under clip on back of firebox wall and push bottom of bricks back.
- 5. Install side bricks. Slide top of brick under clips on side of firebox and push the bottom of the brick until it is flush with the side of the unit.

C. Correct Baffle & Blanket Placement

WARNING

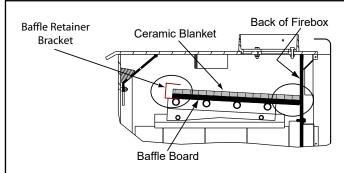
Fire Risk.

Firebox damage due to improper baffle placement is not covered by warranty. Operate the wood burning appliance with the baffle in the correct position only.

Not doing so could result in:

- Reduced efficiency
- Overheating the chimney
- Overheating the rear of the firebox
- Poor performance

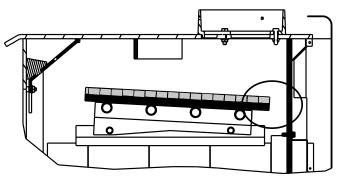
Ensure correct baffle placement and replace baffle components if damaged or missing.



CAUTION

The baffle boards are FRAGILE. Use extreme caution when loading firewood to prevent:

Cracking, breaking or damaging the baffle boards
 DO NOT operate the appliance without baffle boards


CORRECT POSITION

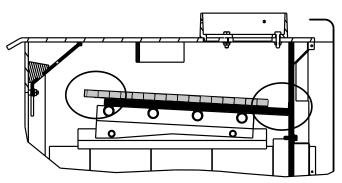
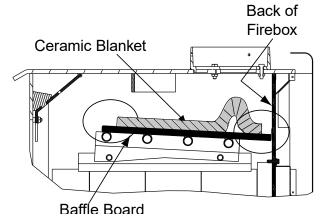

Ceramic Blanket and Baffle Board MUST be in contact with the back of the firebox and even with each other in the front.

Figure 20.1


INCORRECT POSITIONS

Ceramic Blanket and Baffle Board are NOT in contact with the back of the firebox.

Ceramic Blanket is NOT in contact with the back of the firebox and NOT even with the Baffle Board in the front.

Ceramic Blanket is bunched up at the back of the firebox and NOT even with the Baffle Board in the front.

Figure 20.2

Troubleshooting Guide

With proper installation, operation, and maintenance your wood appliance will provide years of trouble-free service. If you do experience a problem, this troubleshooting guide will assist you or a qualified service person in the diagnosis of a problem and the corrective action to be taken.

Start Fire Problems	Possible Cause	Solution
	Not enough kindling/paper or no kindling/paper	Use dry kindling, more paper. Arrange kindling & wood for air movement.
		Check for restricted termination cap
		Check for blockage of outside air kit (if installed).
		Check for flue blockage.
	Not enough air for fire to ignite	Pre-warm flue before starting fire (refer to Building a Fire on page 13).
Can not get fire started		Check for adequate vent height (refer to Chimney Height / Rise and Run on page 13 of the Installation manual).
Excessive smoke or spillage Burns too slowly Not enough heat output		Open window below the appliance towards the wind.
Not enough heat output	Wood condition is too wet, too large	Use dry, seasoned wood (refer to Wood Selection & Storage on page 9).
	Bed of coals not established before adding wood	Start with paper & kindling to establish bed of coals (refer to Building a Fire on page 13).
	Flue blockage such as birds' nests or leaves in termination cap	Have chimney inspected for creosote and cleaned by a certified chimney sweep.
	Down draft or negative pressure	Do not use exhaust fans during start-up (refer to Negative Pressure on page 15).
	Competition with exhaust devices	Open window below the appliance towards the wind.
		Mix in hardwood.
	Extremely dry or soft wood	Mix in less seasoned wood after fire is established (refer to Wood Selection & Storage on page 9).
Fire burns too fast		Check for correct vent height; too much vertical height creates over drafting.
	Over drafting	Check location of vent termination (refer to Chimney Termination Requirement on page 12 of the Installation manual).

Table 21.1

5

Service Part Replacement

A. Glass

NOTE: Replace with 5mm ceramic glass only.

Service Part: 7000-012

- Ensure that the fire is out and the appliance is cool to the touch.
- Protect a table or counter top with padding or towels. Protect your hands and wear gloves to prevent injury.
- 3. Remove the door with the broken glass by lifting the door up and off of the hinges.
- 4. Lay door face down on a table or counter making sure the handle hangs over the edge so the door lays flat, on a soft surface.
- 5. Remove the screws from each glass retainer and remove the glass. (If screws are difficult to remove, soak with penetrating oil first).
- 6. Center the glass with edges evenly overlapping the opening in the door, (i.e. same space top and bottom, left and right sides).
- 7. Replace the glass retainers. Be careful not to cross thread the screws.
- 8. Tighten each retainer just a few turns until each is secured. Check again for centering of glass in door frame. Continue to tighten each retainer alternately, a few turns at a time, until the glass is secure.

NOTE: DO NOT OVER TIGHTEN - can cause glass to break.

9. Replace the door on the appliance.

Quadra-Fire appliances are equipped with ceramic super heat-resistant glass, which can only be broken by impact or misuse.

WARNING

Injury Risk.

- Use only glass specified in manual.
- DO NOT REPLACE with any other material.

CAUTION!

Handle glass assembly with care. **When cleaning glass:**

- Avoid striking, scratching or slamming glass.
- Do NOT clean glass when hot.
- Do NOT use abrasive cleaners.
- · Use a hard water deposit glass cleaner on white film.
- Use commercial oven cleaner on heavier deposits.
- Remove all residue of oven cleaner or will permanently stain glass on next firing.

Refer to maintenance instructions.

B. Firebrick

Service Part: SRV7033-006

Replace the firebrick if they become crumbly and/or if there is a 1/4 inch (6.35mm) gap between the bricks.

Inspect the firebrick after each ash removal.

The firebox is lined with high quality firebrick, which has exceptional insulating properties. There is no need to use a grate; simply build a fire on the firebox floor. Do not operate appliance without firebrick.

- 1. After the coals have completely cooled, remove all old brick and ash from appliance and vacuum firebox.
- Remove new brick set from box and lay out to diagram shown.
- 3. Lay bottom bricks in appliance.
- Install rear bricks on the top of the bottom bricks. Slide top of bricks under clip on back of firebox wall and push bottom of brick back.
- 5. Install side bricks. Slide top of brick under clips on side of firebox and push the bottom of the brick until it is flush with the side of the appliance.

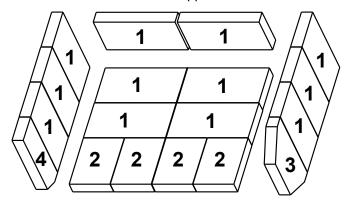


Figure 22.1

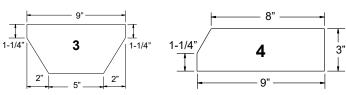


Figure 22.2

Figure 22.3

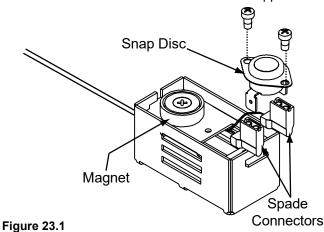

Placement	Dimensions	Qty Required
1	9" x 4.5" x 1.25"	12
2	6" x 4.5" x 1.25"	4
3	9" x 4.5" x 1.25" w/Angles	1
4	9" x 3" x 1.25" w/Angle	1

Table 22.1

C. Snap Disc

Service Part: SRV230-0470

- 1. Locate the snap disc bracket assembly at the bottom left rear corner of the appliance.
- 2. A magnet holds the bracket to the appliance. Pull the bracket down away from the appliance to expose the snap disc.
- 3. Pull the snap disc and spade connectors up and out of bracket as shown in Figure 23.1
- 4. Using a Phillips head screw driver, remove the 2 screws from the snap disc and then remove the snap disc from the spade connectors. Replace with new snap disc and re-connect to spade connectors.
- 5. Push the snap disc and spade connectors back inside bracket and re-attach the bracket to the appliance.

D. Door Handle Assembly

Service Part: SRV7033-071

- Slide door handle through door.
- Install additional washer(s) as shown in Figure 23.2 2.
- 3. Install key in groove.
- 4. Align groove in latch cam with key; slide latch cam over shaft
- Install locknut but do not over tighten, the handle needs to rotate smoothly.
- 6. Install fiber handle (Figure 23.2).

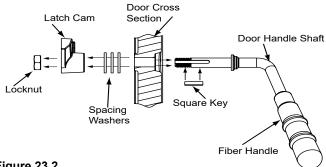


Figure 23.2

CAUTION!

Do not over tighten lock nut. The door handle needs to move smoothly.

E. Baffle

Service Part: SRV7033-209

- 1. Remove all ash from the firebox, and extinguish all hot embers before disposal into a metal container.
- 2. The baffle board has 2 pieces. With the ceramic blanket still in place, slide one baffle piece over the top of other one and pull out top piece through the door opening and then remove bottom baffle piece (Figure 24.1).
- 3. Remove the ceramic blanket.
- 4. Re-install the baffle pieces one piece at a time. Be sure the baffle boards are even with the front manifold tube and is resting on all tubes (**Figure 24.3 and Figure 24.4**).
- 5. To re-install the ceramic blanket, it is easier to fold it in half first. Place on top of baffle board, open up and flatten and smooth out the blanket. Re-check the baffle board for correct positioning (Figure 24.3 and Figure 24.4).

Figure 24.1 - Baffle

Figure 24.2 - Ceramic Blanket

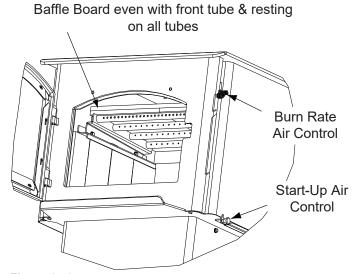


Figure 24.3

Ceramic Blanket on Top

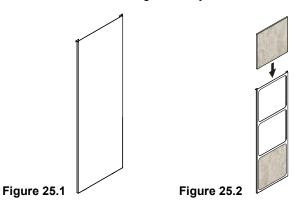


Figure 24.4

F. Decorative Panel Removal & Installation

Left Side Panel Service Part: SRV7033-082 Right Side Panel Service Part: SRV7033-080 Tile Frame Service Part: SRV7033-324 Blank Frame Service Part: SRV7033-346

Your appliance ships with two different side options, one is a solid side panel (Figure 25.1) and tile side panel (Figure 25.2). There are two of each and no left or right side, these can be changed at anytime.

The appliances are being shipped with a solid side panel securing clip on both sides. Please remove and discard pins prior to use (**Figures 25.3**).

Figure 25.3

Solid Side Panel Removal

 Remove solid panel from side by lifting up and pulling away from appliance (use a flat tool to pry from bottom if needed) (Figure 25.4).

NOTE: 300 degree F high temp paint can be use to repaint the solid side panel only! DO NOT use on the rest of appliance this requires 1200 degree F high temp paint.

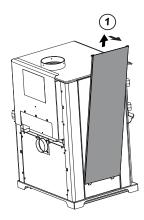


Figure 25.4

Tile Panel Installation

- Remove tile frame from side by lifting up and pulling away from appliance. Figure 25.3 reference solid side panel removal.
- 3. Stack non-combustible material tiles in tile frame as shown in **Figure 25.2.**
- 4. Reattach tile frame (Figure 25.4).

WARNING

Fire Risk.

Use only noncombustible materials as a decorative tile.

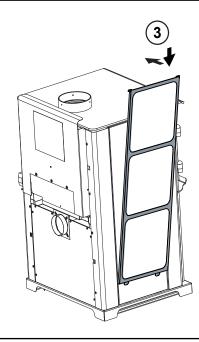


Figure 25.5

Tile Dimensional Requirements:

Max Thickness: 5/16'

Max Length/Width: 11-7/8" square Min Length/Width: 11-11/16" square

G. Tube Channel Assembly

Service Part: SRV7033-023

Removing Tube Channel Assembly

- Remove the right side shield by removing 2 screws in the back using a Phillips head screw driver.
- Remove 4 screws from channel access cover and remove cover.
- 3. Locate 2 channel nuts inside of chamber and remove using a 7/16 socket wrench. Slide out tube channel assembly.

NOTE: Soak the bolts with penetrating oil for at least 15 minutes before trying to remove them.

Replacing Tube Channel Assembly

- 1. Slide one gasket onto each tube.
- 2. Slide the tube channel assembly into side of firebox and insert each tube into the corresponding hole in the tube channel rack starting with the back hole first.
- 3. Make sure tube channel assembly is flush against the side of the appliance and secure with channel nuts.
- Re-install channel cover and side shield.

NOTE: Service Space

In order to replace the tube channel assembly a clearance of 19 inches (483mm) is required on the right side of appliance in order to remove the tubes with the appliance in place.

If space is not available, the appliance will have to be disconnected from the chimney to proceed with the tube replacement.

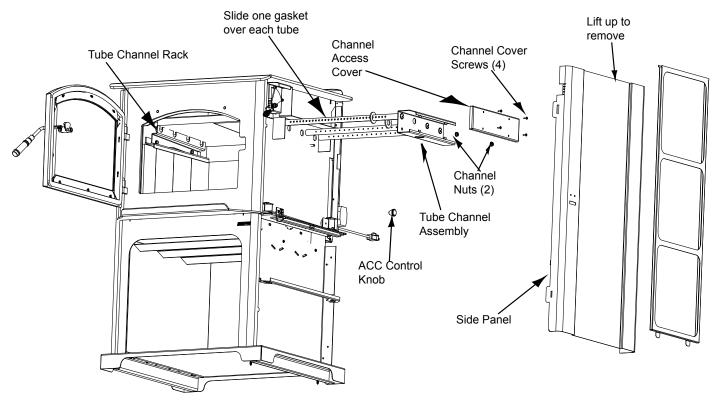
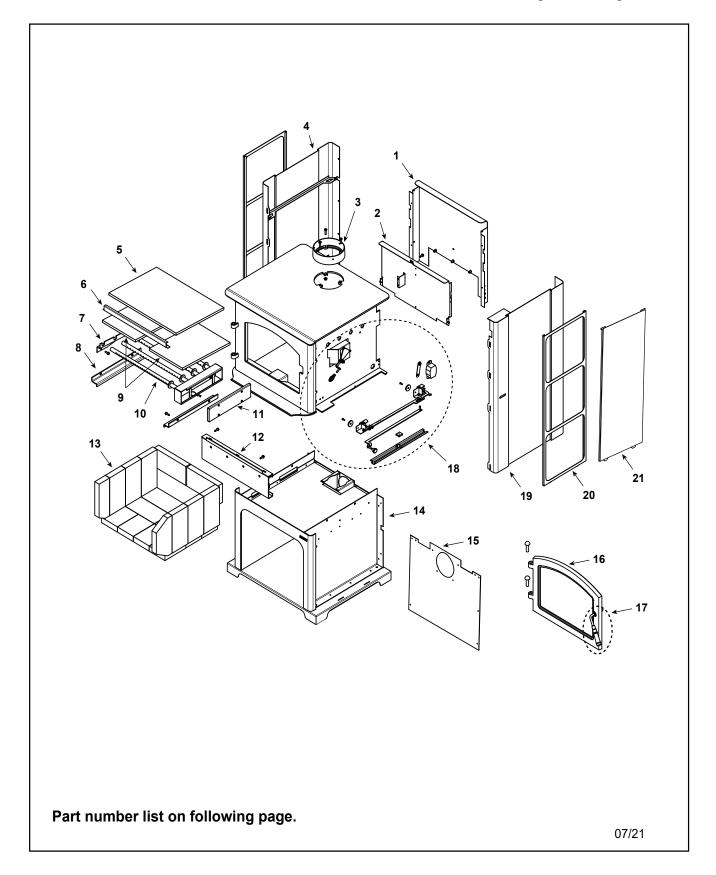


Figure 26.1

Reference Materials


A. Service and Maintenance Log

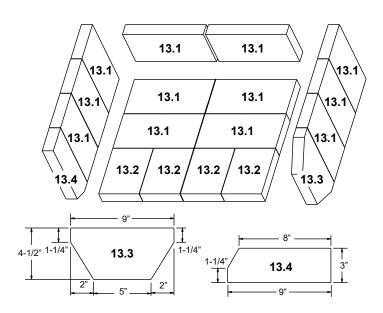
Date of Service	Performed By	Description of Service

Date of Service	Performed By	Description of Service

Wood Stove

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active


IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. Hearth and Home Technologies does not sell directly to consumers. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked at Depot

			_	at Dopot
ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
1	Air Channel, Convection w/Bracket (Retain Original SN La	bel)	SRV7033-144	
2	Air Supply Back		SRV7033-134	
3	Flue Collar		SRV7000-302	
4	Panel Assembly, Side, Left		SRV7033-082	Υ
5	Ceramic Fiber Blanket, 1/2" Thick		832-3390	
6	Baffle Protection Channel		SRV7033-298	
7	Tube Support Rack		SRV7033-148	
8	Brick Retainer		SRV7033-149	
9	Baffle Board	Pkg of 2	SRV7033-209	
10	Tube, Channel Assembly		SRV7033-023	
11	Tube Channel Top		SRV7033-237	Υ
12	Rear Channel Assembly		7033-002	Υ
	•		ļ	

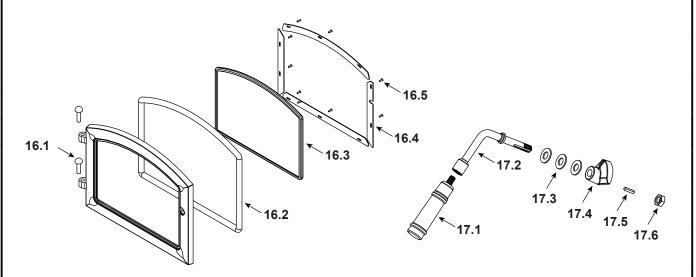
#13 Brick Set Assembly

13	Firebrick Set, Complete Set		SRV7033-006
10.1	13.1 Brick, Uncut, 9 x 4-1/2 x 1-1/4" (Qty. 12 Req.)	Pkg of 1	832-0550
13.1		Pkg of 6	832-3040
13.2	Brick, 6 x 4-1/2 x 1-1/4"	Qty. 4 Req.	SRV7128-002
13.3	Brick, 9 x 4-1/2 x 1-1/4" w/angles	Qty. 1 Req.	SRV7128-805
13.4	Brick, 9 x 3 x 1-1/4" w/angles	Qty. 1 Req.	SRV7128-617

Additional service part numbers appear on following page.

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. Hearth and Home Technologies does not sell directly to consumers. Provide model number and serial number when requesting service parts from your dealer or distributor.


|--|

Stocked at Depot

ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
14	Pedestal Assembly		SRV7033-072	
	Logo, Quadra-Fire	Pkg of 10	7000-649/10	
15	Rear Cover, Pedestal		SRV7033-327	

#16 Door Assembly

#17 Handle Assembly

16	Door Assembly	Black	DR-31/43BK-FH	
10	Bool Assembly	Nickel	DR-34/43NL-FH	
16.1	Hinge Pin, 1/2"	Black	7000-606/2	
10.1	Hilige Fill, 1/2	Nickel	SRV430-5320	
16.2	Rope, Door, 3/4" x 84"	7 Ft.	832-1680	Υ
16.3	Door Glass Assembly		SRV7000-012	Υ
	Gasket, Glass Tape, 3/4" x 1/8"	5 Ft.	832-0460	Υ
16.4	Glass Frame Set	4 pcs.	832-0350	
16.5	Screw Flat Head Phillips 8-32 x 1/2	Pkg of 12	220-0490/12	Υ
17	Door Handle Assembly		SRV7033-071	
17.1	Fiber Handle		SRV7060-212	
17.2	Door Handle		SRV7044-188	Υ
17.3	Washer, Sae, 3/8 (3 Ea)	Pkg of 3	832-0990	
17.4	Cam Latch		SRV430-1141	
17.5	Key, Cam Latch		SRV430-1151	
17.6	Nut, 2-Wy Side-Lock Jam 3	Pkg of 24	226-0100/24	Υ

Additional service part numbers appear on following page.

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked at Depot

nd seria	al number when requesting service parts from your dealer	r or distributor.		at Depo
ITEM	DESCRIPTION	COMMENTS	PART NUMBER	
#18	18.1 18.2 18.3 18.4 18.5 18.6	18.8	18.10 18.9	
18.1	Burn Rate Control Assembly		SRV7033-033	Y
18.2	Spring Handle,1/4", Nickel		250-8340	Υ
18.3	Door Gasket		7033-282	Υ
18.4	Timer Air Control Assembly		SRV7033-052	Y
	Rear Air Door Assembly		SRV7033-024	

18.3	Door Gasket	7033-282	Y
18.4	Timer Air Control Assembly	SRV7033-052	Y
	Rear Air Door Assembly	SRV7033-024	
18.5	Control Arm Assembly, Rear Air	SRV7033-079	
18.6	Knob	SRV7000-343	
18.7	Air Control Rod Guide	SRV7033-210	
18.8	Latch, Magnet	SRV229-0631	
18.9	Timer Arm Assembly	SRV7033-034	Y
18.10	Timer (Only) Replacement Assembly	SRV480-1940	Y
19	Panel Assembly, Side Right	SRV7033-080	
20	Tile Frame	SRV7033-324	
21	Blank Frame	SRV7033-346	
	Component Pack Assembly	SRV7033-097	
	Paint, Touch-Up	3-42-19905	
A -1 -1:4:	al assista want numbers and an fallautian want	· · · · · · · · · · · · · · · · · · ·	-

Additional service part numbers appear on following page.

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. Hearth and Home Technologies does not sell directly to consumers. Provide model number and serial number when requesting service parts from your dealer or distributor.

	2-22-22-22			at Depot	
ITEM	DESCRIPTION	COMMENTS	PART NUMBER		
	ACCESSORIE	:S	DICAGO.		
	Blower Assembly		BK-ACC	ļ	
	Blower Convection		812-4900		
	Blower Control Box w/Switch		SRV7000-194	Y	
	Component Pack		7033-051		
	Snap Disc Bracket Assembly		SRV7033-036		
	Snap Disc, # 1, Convection Blower		SRV230-0470	Y	
	Wire Harness, Blower		7033-262		
	Outside Air Kit, Floor & Rear		OAK-ACC		
	Outside Air Collar Assembly		SRV7033-039		
	Outside Air Shield		SRV33271	Y	
	Outside Air Cover Plate Assembly		SRV7033-041	Y	
				1	
	FASTENER	S			
	Avk Rivnut Repair Kit - 1/4-20 & 3/8-16 Rivnut Tools		RIVNUT-REPAIR	Υ	
	Bolt, Hex Head, 1/4-20 X 1	Pkg of 10	25221A/10	Y	
	Button Head 1/4-20 X .5	Pkg of 20	32328/20	Y	
	Nut, 2-Wy Side-Lock Jam 3	Pkg of 24	226-0100/24	Y	
	Nut, Keps Lock, 10-32	Pkg of 40	226-0050/40	Y	
	Nut, Ser Flange Small 1/4-20	Pkg of 24	226-0130/24	Y	
	Screw PH PHL TC 8-32X1/2	Pkg of 25	220-0130/24	Y	
	Screw, Pan Head Philips Tc 8-32X1/2	Pkg of 12	220-0490/12	Y	
		 	+	Y	
	Screw, Bh, 1/4-20 X 1.25	Pkg of 24	225-0630/24	+	
	Screw, Pan Head Philips 8-32 X 3/4	Pkg of 24	229-1100/24	Y	
	Screw, Pan Head Philips 8-32 X 3/8	Pkg of 40	225-0500/40	Y	
	Screw, Sheet Metal #8 X 1/2 S-Grip	Pkg of 40	12460/40	Y	

CONTACT INFORMATION

Hearth & Home Technologies 352 Mountain House Road Halifax, PA 17032 Division of HNI INDUSTRIES

Please contact your Quadra-Fire dealer with any questions or concerns.

For the number of your nearest Quadra-Fire dealer
log onto www.quadrafire.com

CAUTION

DO NOT DISCARD THIS MANUAL

- Important operating and maintenance instructions included.
- Read, understand and follow these instructions for safe installation and operation.
- Leave this manual with party responsible for use and operation of this appliance.

We recommend that you record the following pertinent information for your heating appliance.

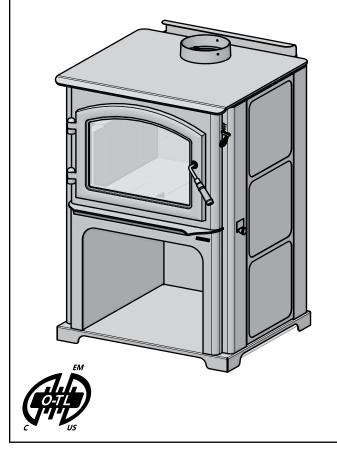
Dealer Phone: 1(\
Dodici i fioric. I) -
-	

This product may be covered by one or more of the following patents: (United States) 5341794, 5263471, 6688302, 7216645, 7047962 or other U.S. and foreign patents pending.

Installation Manual

Installation & Appliance Set-Up

INSTALLER: Leave this manual with party responsible for use and operation.


OWNER: Retain this manual for future reference.

NOTICE: DO NOT DISCARD THIS MANUAL

QUADRA-FIRE

DISCOVERY II WOOD APPLIANCE
AUTOMATIC COMBUSTION
CONTROL (ACC)

MODEL NUMBER: DISCOVERY-II-C

Installation and service of this appliance should be performed by qualified personnel. Hearth & Home Technologies recommends HHT Factory Trained or NFI certified professionals.

WARNING

If the information in these instructions is not followed exactly, a fire could result causing property damage, personal injury, or death.

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
- <u>Do not over-fire</u> If appliance or chimney connector glows, you are over-firing. Over-firing will void your warranty.
- Comply with all minimum clearances to combustibles as specified.

Failure to comply may cause house fire.

WARNING

HOT SURFACES!

Glass and other surfaces are hot during operation AND cool down.

Hot glass and appliance will cause burns.

- Do not touch glass until it is cooled
- Use leather gloves when reloading fuel
- · NEVER allow children to touch glass
- Keep children away
- CAREFULLY SUPERVISE children in same room as appliance.
- Alert children and adults to hazards of high temperatures
- High temperatures may ignite clothing or other flammable materials.
- Keep clothing, furniture, draperies and other flammable materials away.

WARNING

Fire Risk.

For use with solid wood fuel only. Other fuels may over-fire and generate poisonous gases (i.e. carbon monoxide).

NOTE: To obtain a French translation of this manual, please contact your dealer or visit www.quadrafire.com **REMARQUE:** Pour obtenir une traduction française de ce manuel, s'il vous plaît contacter votre revendeur ou visitez www.quadrafire.com

Safety Alert Key:

- **DANGER!** Indicates a hazardous situation which, if not avoided will result in death or serious injury.
 - WARNING! Indicates a hazardous situation which, if not avoided may result in death or serious injury.
- **CAUTION!** Indicates a hazardous situation which, if not avoided, <u>may</u> result in minor or moderate injury. **NOTICE:** Indicates practices which may cause damage to the appliance or to property.

TABLE OF CONTENTS

	1 Important Safety Information	4 Chimney Systems	
	A. Appliance Safety Certification 3 B. Appliance Emission Certification 3 C. BTU & Efficiency Specifications 3 D. Mobile Home Approved 4 E. Glass Specifications 4 F. Non-Combustible Materials 4 G. Combustible Materials 4 H. Sleeping Room 4	A. Locating Your Appliance & Chimney B. Chimney Termination Requirements 1 C. 2-10-3 Rule 1 D. Chimney Height / Rise and Run 1 E. Venting Components 1 F. Chimney Systems 1 G. Installing Chimney Components 1 H. Proper Draft 1	2 3 3
	I. California - Prop65	5 Appliance Set-Up	
	2 Getting Started A. Design and Installation Considerations	A. Outside Air Kit Installation	17 18
	E. Inspection of Appliance and Components 6	6 Mobile Home Installation	18
	F. Removal of Appliance from Shipping Materials 6	7 Reference Materials	
	G. Install Checklist	A. Service & Maintenance Log	
	3 Dimensions and Clearances	B. Accessories	!1
)	A. Appliance Dimensions	→ = Contains updated information	

Important Safety Information

A. Appliance Safety Certification

Model Number:	DISCOVERY-II-C	
Laboratory:	OMNI Test Laboratories, Inc.	
Report Number:	0061WS066S	
Туре:	Listed Room Appliance, Solid Fuel Type	
Standard:	UL 1482-11 (R2015) and ULC S627-00 and (UM) 84-HUD, Mobile Home Approved.	

B. Appliance Emission Certification

Model Number:	DISCOVERY-II-C				
Laboratory:	OMNI Test Laboratories, Inc.				
Report Number:	0061WS066E				
Standard: ASTM E2515, ASTM E2780					
Can be found at: www.quadrafire.com/about-us/epa-certification					

The DISCOVERY-II-C is Certified to comply with 2020 crib wood particulate emission standards.

This wood appliance needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood appliance in a manner inconsistent with operating instructions in this manual.

NOTE: This installation must conform with local codes. In the absence of local codes you must comply with (UM) 84-HUD and NFPA211 in the U.S.A. and CAN/CSA-B365 Installation Codes in Canada.

C. BTU & Efficiency Specifications

EPA Certification Number:	Number: 86-17
EPA Certified Emissions:	1.9 grams per hour
*LHV Tested Efficiency:	78.3%
**HHV Tested Efficiency:	72.5%
***EPA BTU Output:	13,900 to 29,100 / hr
****Peak BTU/Hour Output:	51,000
Vent Size:	6 inches
Firebox Size:	1.89 cubic feet
Recommended Log Length:	16 inches
Fuel	Seasoned Cord Wood (20% moisture)

- * Weighted average LHV (Low Heating Value) efficiency sing Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. LHV assumes the moisture is already in a vapor state so there is no loss in energy to vaporize.
- ** Weighted average HHV (High Heating Value) efficiency using Douglas Fir dimensional lumber and data collected during EPA emission tests in accordance with the requirements of CSA B415.1. HHV includes the energy required to vaporize the water in the fuel.
- *** A range of BTU outputs calculated using HHV Efficiency and the burn rates from the EPA tests, using Douglas Fir dimensional lumber.
- **** A peak BTU out of the appliance calculated using the maximum first hour burn rate from the High EPA Test and BTU content of seasoned cordwood (8600) times the efficiency.

D. Mobile Home Approved

- This appliance is approved for mobile home installations; when not installed in a sleeping room and when an outside combustion air inlet is provided.
- The structural integrity of the mobile home floor, ceiling, and walls must be maintained.
- The appliance must be properly grounded to the frame
 of the mobile home with #8 copper ground wire, and
 chimney must be listed to UL103 HT or a listed UL1777 full length six inch (152mm) diameter liner must be
 used.
- Outside Air Kit, part OAK-ACC must be installed in a mobile home installation.

E. Glass Specifications

This appliance is equipped with 5mm ceramic glass. Replace glass only with 5mm ceramic glass. Please contact your dealer for replacement glass.

F. Non-Combustible Materials

Material which will not ignite and burn, composed of any combination of the following:

- Steel
- Plaster
- Brick
- Iron
- Concrete
- Tile
- Glass
- Slate

Materials reported as passing ASTM E 136, Standard Test Method for Behavior of Metals, in a Vertical Tube Furnace of 750° C.

G. Combustible Materials

Material made of/or surfaced with any of the following materials:

- Wood
- Compressed Paper
- Plant Fibers
- Plastic
- Plywood/OSB
- Sheet Rock (drywall)

Any material that can ignite and burn: flame proofed or not, plastered or non-plastered.

H. Sleeping Room

When installed in a sleeping room it is recommended that a smoke and/or CO alarm be installed in the bedroom. The size of the room must be at least 50ft³ per 1,000 Btu/hr stove input, if the stove exceeds the room size, out air must be installed.

I. California - Prop65

WARNING

This product and the fuels used to operate this product (wood), and the products of combustion of such fuels, can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, and carbon monoxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to: WWW.P65Warnings.ca.gov

WARNING

Fire Risk

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- · Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage.

For assistance or additional information, consult a qualified installer, service agency or your dealer.

NOTE: Hearth & Home Technologies, manufacturer of this appliance, reserves the right to alter its products, their specifications and/or price without notice.

Hearth & Home Technologies WILL NOT warranty appliances that exhibit evidence of over-firing. Evidence of over-firing includes, but is not limited to:

- Warped air tube
- Deteriorated refractory brick retainers
- Deteriorated baffle and other interior components

A. Design and Installation Considerations

Consideration must be given to:

- Safety
- Convenience
- Traffic flow
- Chimney and chimney connector required

It is a good idea to plan your installation on paper, using exact measurements for clearances and floor protection, before actually beginning the installation. If you are not using an existing chimney, place the appliance where there will be a clear passage for a factory-built listed chimney through the ceiling and roof.

We recommend that a qualified building inspector and your insurance company representative review your plans before and after installation.

If this appliance is in an area where children may be near it is recommended that you purchase a decorative barrier to go in front of the appliance. Remember to always keep children away while it is operating and do not let anyone operate this appliance unless they are familiar with these operating instructions.

CAUTION

Check building codes prior to installation.

- Installation MUST comply with local, regional, state and national codes and regulations.
- Consult insurance carrier, local building, fire officials or authorities having jurisdiction about restrictions, installation inspection, and permits.

WARNING

Asphyxiation Risk.

- Do NOT connect this appliance to a chimney flue servicing another appliance.
- Do NOT connect to any air distribution duct or system.

May allow flue gases to enter the house.

NOTICE: Hearth & Home Technologies assumes no responsibility for the improper performance of the appliance system caused by:

- · Inadequate draft due to environmental conditions
- Down drafts
- · Tight sealing construction of the structure
- Mechanical exhausting devices
- · Over drafting caused by excessive chimney heights
- Ideal performance is with height of chimney between 14-16 feet (4.26-4.88m) measured from the base of the appliance.

B. Fire Safety

To provide reasonable fire safety, the following should be given serious consideration:

- Install at least one smoke detector on each floor of your home to ensure your safety. They should be located away from the heating appliance and close to the sleeping areas. Follow the smoke detector manufacturer's placement and installation instructions, and be sure to maintain regularly.
- 2. A conveniently located Class A fire extinguisher to contend with small fires resulting from burning embers.
- 3. A CO detector should be installed in the room with the appliance.
- 4. A practiced evacuation plan, consisting of at least two escape routes.
- 5. A plan to deal with a chimney fire as follows:
 - In the event of a chimney fire:
 - Evacuate the house immediately
 - Notify fire department.

C. Negative Pressure

WARNING

Asphyxiation Risk.

- Negative pressure can cause spillage of combustion fumes, soot and carbon monoxide.
- Appliance needs to draft properly for safety.

Negative pressure results from the imbalance of air available for the appliance to operate properly. It can be strongest in lower levels of the house.

Causes include:

- Exhaust fans (kitchen, bath, etc.)
- Range hoods
- Combustion air requirements for furnaces, water appliances and other combustion appliances
- Clothes dryers
- Location of return-air vents to furnace or air conditioning
- Imbalances of the HVAC air handling system
- Upper level air leaks such as:
 - Recessed lighting
 - Attic hatch
 - Duct leaks

To minimize the effects of negative air pressure:

- Install optional outside air kit with the intake facing prevailing winds during the heating season
- Ensure adequate outdoor air for all combustion appliances and exhaust equipment
- Ensure furnace and air conditioning return vents are not located in the immediate vicinity of the appliance
- Avoid installing the appliance near doors, walkways or small isolated spaces
- · Recessed lighting should be a "sealed can" design
- · Attic hatches weather stripped or sealed
- Attic mounted duct work and air handler joints and seams taped or sealed
- Basement installations should be avoided

WARNING

Fire Risk.

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- · Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- <u>Do NOT Over fire</u> If appliance or chimney connector glows, you are over firing.

Any such action that may cause a fire hazard.

D. Tools And Supplies Needed

Before beginning the installation be sure the following tools and building supplies are available:

- Reciprocating saw
- Framing material
- Pliers
- High temp caulking material
- Hammer
- Gloves
- Phillips screwdriver
- Framing square
- Flat blade screwdriver
- Electric drill and bits
- Plumb line
- Safety glasses
- Level
- Tape measure
- Misc. screws and nails
- 7/16 socket or wrench

1/2-3/4 in. length, #6 or #8 self-drilling screws

E. Inspection of Appliance and Components

- Remove appliance and components from packaging and inspect for damage.
- Report to your dealer any parts damaged in shipment.
- Read all the instructions before starting the installation. Follow these instructions carefully during the installation to ensure maximum safety and benefit.

F. Removal of Appliance from Shipping Materials

- 1. Remove box and 2x4 structural boards being careful not to damage product.
- 2. Using a 7/16 socket or open end wrench, remove and discard the four lag bolts from mounting brackets (two on each side) attaching the appliance to the pallet.
- 3. Carefully pull appliance off of pallet and put in desired location following Hearth Pad information on page 9 and Clearance to Combustibles on page 10.

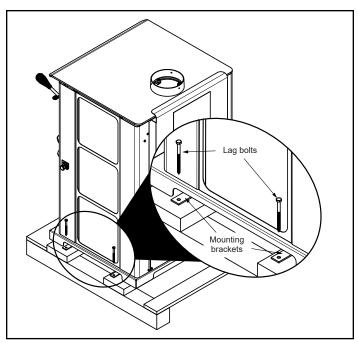


Figure 6.1

WARNING

Fire Risk.

Inspect appliance and components for damage. Damaged parts may impair safe operation.

- · Do NOT install damaged components.
- · Do NOT install incomplete components.
- Do NOT install substitute components.

Report damaged parts to dealer.

G. Install Checklist

ATTENTION INSTALLER: Follow this Standard Work Checklist This standard work checklist is to be used by the installer in conjuction with, not instead of, the instructions contained in this installation manual. Customer: Date Installed: Lot / Address: Location of Appliance: _____ Installer: Dealer / Distributor Phone #: Serial #: _____ Model: WARNING! Risk of Fire or Explosion! Failure to install appliance according to these instructions can lead to a fire or explosion. Appliance Install IF NO, WHY? Verified clearances to combustibles. Appliance is leveled and connector is secured to appliance. Hearth extension size/height decided. Outside air kit installed. Floor protection requirements have been met. If appliance is connected to a masonry chimney, it should be cleaned and inspected by a professional. If installed to a factory built metal chimney, the chimney must be installed according to the manufacturer's instructions and clearances. **Chimney** Chimney configuration complies with diagrams. Chimney installed, locked and secured in place with proper clearance. Chimney meets recommended height requirements (14-16 feet). Roof flashing installed and sealed. Terminations installed and sealed. **Clearances** Combustible materials not installed in non-combustible areas. Verified all clearances meet installation manual requirements. Mantels and wall projections comply with installation manual requirements. Protective hearth strips and hearth extension installed per manual requirements. **Appliance Setup** All packaging and protective materials removed. Firebrick, baffle and ceramic blanket installed correctly. All labels have been removed from the door. All packaging materials are removed from inside/under the appliance. Manual bag and all of its contents are removed from inside/under the appliance and given to the party responsible for use and operation. Hearth & Home Technologies recommends the following: Photographing the installation and copying this checklist for your file. That this checklist remain visible at all times on the appliance until the installation is complete. Comments: Further description of the issues, who is responsible (Installer/Builder/Other Trades, etc.) and corrective action needed:

A. Appliance Dimensions

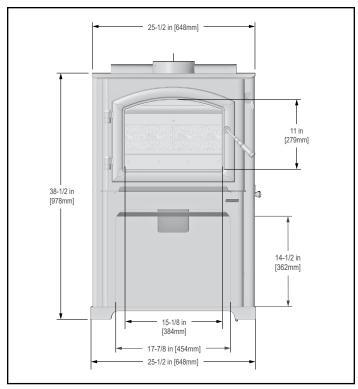


Figure 8.1 - Front View

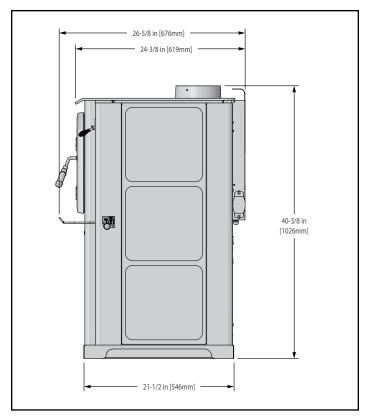


Figure 8.3 - Side View

NOTE: Flue Collar size is 6 inch (152mm) diameter (ID)

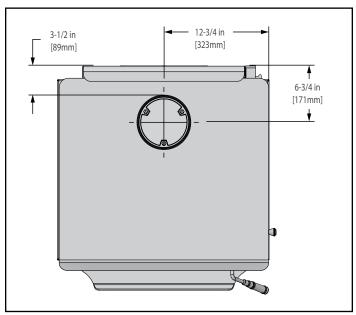


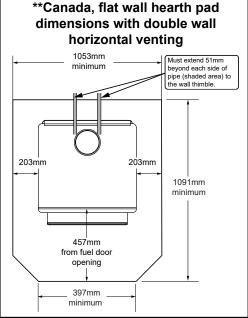
Figure 8.2 - Top View

B. Hearth Protection Requirements

EMBER PROTECTION: Ember protection shall be either a Type 1 floor protector or made of non-combustible material to the requirements below.

Floor protector must be non-combustible material, extending beneath appliance with a minimum of 16 inches (406mm) in front of glass and 8 inches (203mm) to both sides of the fuel loading door. Open the door and measure 8 inches (203mm) from the side edge of the opening in the face of the appliance. *See exception.

USA, minimum flat wall hearth pad dimensions


31-5/8 in minimum

Fuel loading door

8 in. 16 in. from fuel door opening

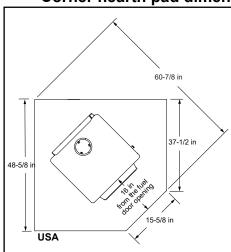
15-5/8 in minimum

Figure 9.1

Figure 9.2 - **This dimension will vary depending installation.

In Canada, similar floor protection must be provided 18 inches (457mm) in front and 8 inches (203mm) from the sides and rear of the appliance unless the hearth pad is placed against the wall (Figure 9.2). Then the clearance may be reduced using double wall pipe and the Clearance to Combustibles table listed on page 10.

*Exception: Non-combustible floor protector must extend beneath the flue pipe when installed with horizontal venting and extend 2 inches (51mm) beyond each side; See Figure 9.2


WARNING

Fire Risk.

Hearth pads must be installed exactly as specified. High temperatures or hot embers may ignite concealed combustibles.

Corner hearth pad dimensions with single wall pipe

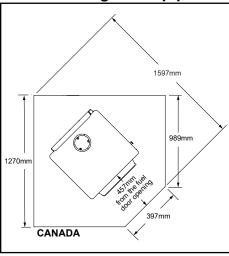
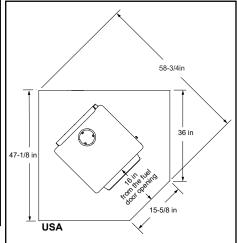



Figure 9.3

Figure 9.5

Corner hearth pad dimensions with double wall pipe

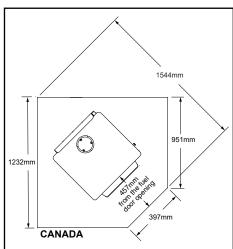
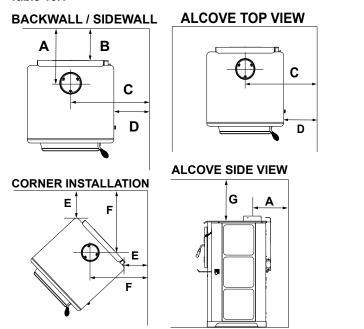
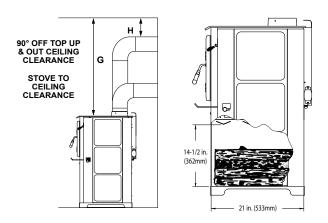


Figure 9.4

Figure 9.6

C. Clearances to Combustibles


Note: If mantle clearance specifications are not listed or to reduce mantle clearances you can follow NFPA211 regulations to assure safe installation of this product. Please consult with your local building inspector before attempting any clearance reductions.


MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS IN INCHES (MILLIMETERS) NOTE: A, C, AND F DIMENSIONS ARE TO THE CENTER OF THE FLUE COLLAR										
DISCOVERY-II-C WOOD APPLIANCE										
	Α	В	С	D	E	F	G	Н		
	INSTALLATION: FULL VERTICAL									
SINGLE WALL PIPE										
DISCOVERY-II-C	18-1/4 (464)	11-3/4 (298)	28-1/2 (724)	16 (406)	8 (203)	20 (208)	48 (1220)	12 (305)		
DOUBLE WALL PIPE										
DISCOVERY-II-C	13-1/2 (343)	6-1/2 (165)	25 (635)	13 (330)	6-1/2 (165)	18-1/2 (470)	48 (1220)	9 (229)		
	INST	ALLATION: 90 DE	GREE ELBOW O	FF TOP OF APPLI	ANCE THROUGH	BACKWALL				
SINGLE WALL PIPE										
DISCOVERY-II-C	15 (381)	8-1/2 (216)	25 (635)	13 (330)	8 (203)	20 (508)	48 (1220)	12 (305)		
DOUBLE WALL PIPE										
DISCOVERY-II-C	11 (279)	4-1/2 (114)	20-1/2 (521)	8-1/2 (216)	6-1/2 (165)	18-1/2 (470)	48 (1220)	9 (229)		
			INSTALL	ATION: ALCOVE						
DOUBLE WALL PIPE										
DISCOVERY-II-C	14-3/4 (375)	8-1/4 (210)	26-1/2 (673)	14-1/2 (368)	N/A	N/A	48 (1220)	N/A		

For alcove only: Six inch diameter listed Double wall air insulated connector pipe with UL103 HT listed factory built Class A chimney or masonry chimney. Maximum depth of Alcove shall be no more than 48 inches (1219mm) and the referenced alcove clearances. Canada must comply with CAN/ULC-S269 M87 for the 650° factory built chimney.

* FOLLOW PIPE MANUFACTURES CLEARANCES AS REQUIRED

Table 10.1

NOTE: Clearances may only be reduced by means approved by the regulatory authority having jurisdiction

WARNING

Fire Risk.

- Comply with all minimum clearances to combustibles as specified.
- · Failure to comply may cause house fire.

NOTE: Service Space

In order to replace the tube channel assembly a clearance of 19 inches (483mm) is required on the right side of appliance in order to remove the tubes with the appliance in place.

If space is not available, the appliance will have to be disconnected from the chimney to proceed with the tube replacement.

Chimney Systems

A. Locating Your Appliance & Chimney

Location of the appliance and chimney will affect performance. As shown in **Figure 11.1** the chimney should:

- Install through the warm space enclosed by the building envelope. This helps to produce more draft, especially during lighting and die down of the fire.
- Penetrate the highest part of the roof. This minimizes the affects of wind turbulence and down drafts.
- Consider the appliance location in order to avoid floor and ceiling attic joists and rafters.
- Locate termination cap away from trees, adjacent structures, uneven roof lines and other obstructions.

Your local dealer is the expert in your geographic area and can usually make suggestions or discover solutions that will easily correct your flue problem.

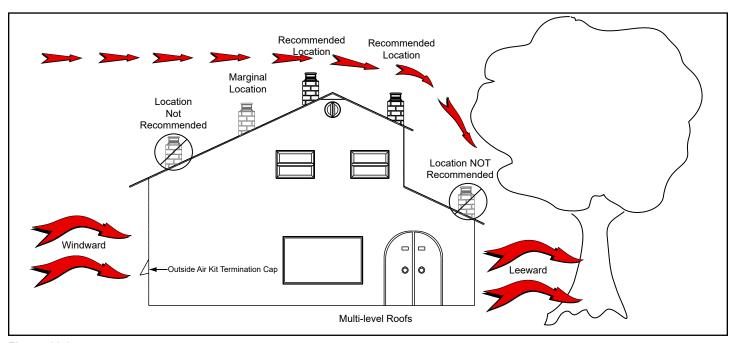


Figure 11.1

B. Chimney Termination Requirements

Follow manufacturer's instructions for clearance, securing flashing and terminating the chimney (Figure 12.1 and Figure 12.2).

- · Must have an approved and Listed cap
- Must not be located where it will become plugged by snow or other material
- Must terminate at least 3 feet (91cm) above the roof and at least 2 feet (61cm) above any portion of the roof within 10 feet (305cm).
- Must be located away from trees or other structures

NOTICE:

- Chimney performance may vary.
- Trees, buildings, roof lines and wind conditions affect performance.
- Chimney height may need adjustment if smoking or overdraft occurs.

NOTICE: Locating the appliance in a basement or in a location of considerable air movement can cause intermittent smoke spillage from appliance. Do not locate appliance near

- · Frequently open doors
- · Central heat outlets or returns

C. 2-10-3 Rule

These are safety requirements and are not meant to assure proper flue draft.

This appliance is made with a 6 inch (152mm) diameter chimney connector as the flue collar on the appliance.

- Changing the diameter of the chimney can affect draft and cause poor performance.
- It is not recommended to use offsets and elbows at altitudes above 4000 feet above sea level and or when there are other factors that affect flue draft.

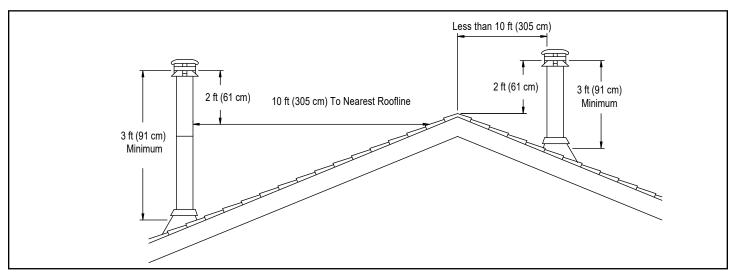


Figure 12.1

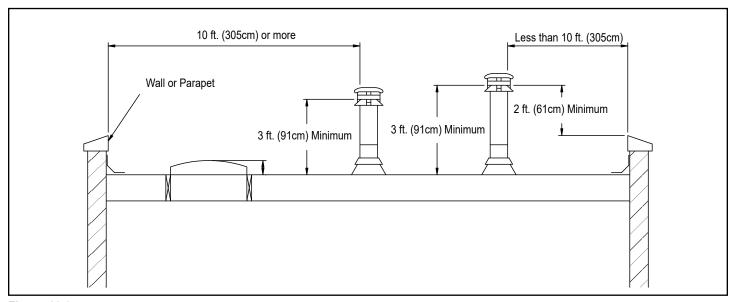


Figure 12.2

D. Chimney Height / Rise and Run

This product was designed for and tested on a 6 inch (152mm) chimney, 14 to 16 feet (420-480cm) high, (includes appliance height) measured from the base of the appliance. The further your stack height or diameter varies from this configuration, the greater the likelihood it may affect performance.

Chimney height may need to be increased by 2 - 3% per each 1000 feet above sea level. It is not recommended to use offsets or elbows at altitudes above 4000 feet above sea level or when there are other factors that affect flue draft.

WARNING

Fire Risk.

Inspection of Chimney:

- Chimney must be in good condition.
- · Meets minimum standard of NFPA 211
- Factory-built chimney must be 6 inch (152mm) UL103 HT.

WARNING

Asphyxiation Risk.

- DO NOT CONNECT THIS APPLIANCE TO A CHIMNEY FLUE SERVICING ANOTHER APPLIANCE.
- DO NOT CONNECT TO ANY AIR DISTRIBUTION DUCT OR SYSTEM.

May allow flue gases to enter the house.

WARNING

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to the owner's information manual provided with this appliance. For assistance or additional information consult a qualified installer, service agency or your dealer.

E. Venting Components

Chimney Connector:

It is also known as flue pipe or appliance pipe. The chimney connector joins the appliance to the chimney. It must be a 6 inch (152mm) minimum diameter 24 gauge mild steel black or 26 gauge blued steel, or an approved air-insulated double wall venting pipe.

Thimble:

A manufactured or site-constructed device installed in combustible walls through which the chimney connector passes to the chimney. It is intended to keep the walls from igniting. Site constructed thimbles must meet NFPA 211 Standards. Prefabricated must be suitable for use with selected chimney and meet UL103 Type HT Standards. Follow instructions provided by the manufacturer for manufactured thimbles for masonry chimney and prefabricated chimneys.

Chimney:

The chimney can be new or existing, masonry or prefabricated and must meet the following minimum requirements and as specified in Section 4F.

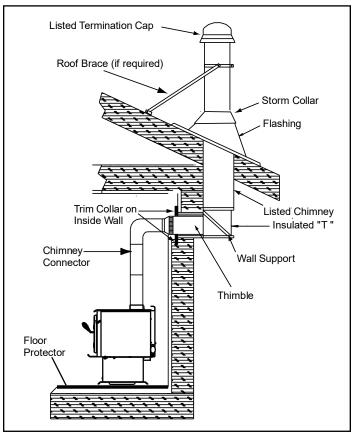


Figure 13.1 - Prefabricated Exterior Chimney

F. Chimney Systems

Prefabricated Metal Chimney

- Must be minimum 6 inch (152mm) diameter (ID) high temperature chimney listed to UL 103 HT (2100°F) or ULC S629M.
- Must use components required by the manufacturer for installation.
- Must maintain clearances required by the manufacturer for installation.
- · Refer to manufacturers instructions for installation.

NOTE: In Canada when using a factory-built chimney it must be safety listed, Type UL103 HT (2100°F) CLASS "A" or conforming to CAN/ULC-S629M, STANDARD FOR 650°C FACTORY-BUILT CHIMNEYS.

Thimble

Site constructed for masonry chimney installation:

Components

A minimum length of 12 inches [305mm] (longer for thicker walls) of solid insulated factory-built chimney length constructed to UL 103 Type HT 6 inch (152mm) inside diameter. Chimney needs to extend a minimum of 2 inches (51mm) from the interior wall and a minimum of 1 inch (25mm) from the exterior wall.

Wall spacer, trim collar and wall band to fit solid pack chimney selected.

Minimum 8 inch (203mm) diameter clay liner section (if not already present in chimney) and refractory mortar.

When jurisdiction requires install approved chimney liner in masonry chimney.

Air Clearances

- Masonry chimney clearance must meet NFPA 211 minimum requirement of 2 inches (51mm) to sheet metal supports and combustibles.
- Minimum of 1 inch (25mm) clearance around the chimney connector.
- Top of wall opening is a minimum of 13-1/2 inches (343mm) from ceiling or 4-1/2 inches (114mm) below minimum clearance specified by chimney connector manufacturer. NFPA 211 minimum vertical clearance of 18 inches (457mm) from chimney connector and ceiling or minimum recommended by chimney connector manufacturer (Figure 14.2).

Instructions:

- 1. Open inside wall at proper height for the chimney connector to entry the masonry chimney (Figure 14.2).
- Entry hole to masonry chimney must be lined with an 8 inch (203mm) minimum diameter clay liner, or equivalent, secured with refractory mortar.
- 3. Construct a 17 inch x 17 inch (432mm x 432mm) outside dimension frame from 2 x 2 framing lumber to fit into wall opening. Inside opening of frame should be no less than 14 inch x 14 inch (356mm x 356mm) (**Figure 14.2**).
- 4. Attach the wall spacer to the chimney side of the frame.
- Nail the frame into the wall opening. The spacer should be on the chimney side.
- 6. Insert the section of the solid insulated chimney into the outer wall of the masonry chimney.
- 7. Tightly secure the length of the solid insulated chimney with the wall band to the masonry chimney.
- 8. Insert a section of chimney connector into the chimney. Make sure it does not protrude past the edge of the clay chimney liner inside the chimney.
- Seal the end of the chimney connector to the clay liner with refractory mortar.
- 10. Install trim collar around the sold pack chimney section.

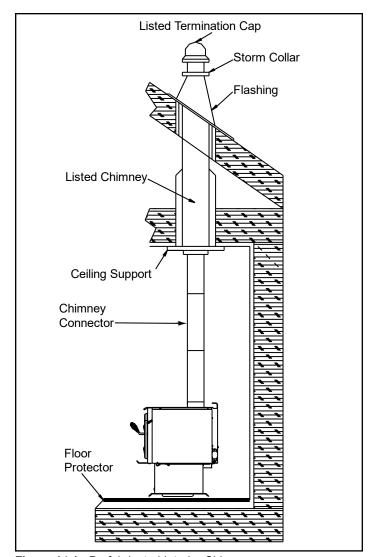


Figure 14.1 - Prefabricated Interior Chimney

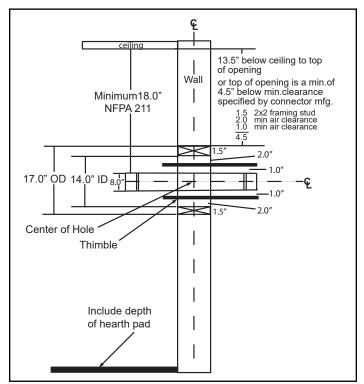


Figure 14.2

Solid Pack Chimney with Metal Supports as a Thimble

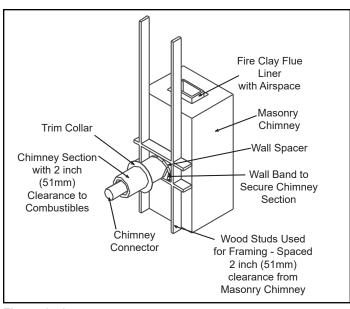


Figure 15.1

WARNING

Fire Risk.

Do NOT pack insulation or other combustibles between spacers.

- ALWAYS maintain specified clearances around venting and spacers.
- · Install spacers as specified.

Failure to keep insulation or other material away from vent pipe may cause fire.

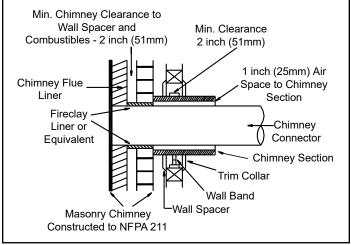


Figure 15.2

G. Installing Chimney Components

Chimney Connector

Single wall connector or appliance pipe.

This must be at least 24 gauge mild steel or 26 gauge blue steel. The sections must be attached to the appliance and to each other with the crimped (male) end pointing toward the appliance. All joints, including the connection at the flue collar, should be secured with 3 sheet metal screws. Make sure to follow the minimum clearances to combustibles. Where passage through the wall, or partition of combustible construction is desired in Canada, the installation shall conform to **CAN/CSA-B365**.

Factory-built listed chimney connector (vented).

A listed connector (vented) must be used when installing this appliance in a mobile home. The listed connectors must conform to each other to ensure a proper fit and seal.

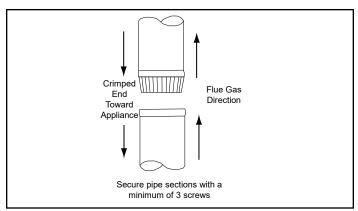


Figure 15.3 - Chimney Connector (Appliance Pipe)

WARNING

Fire Risk.

Follow Chimney Connector Manufacturer's Instructions for Proper Installation.

ONLY use connector:

 Within the room, between appliance and ceiling or wall.

Connector shall NOT pass through:

- · Attic or roof space
- · Closet or similar concealed space
- Floor or ceiling

Maintain minimum clearances to combustibles

H. Proper Draft

To be sure that your Quadra-Fire appliance burns properly, the chimney draft (static pressure) should be approximately -0.10 inches water column (W.C.) during a high burn and -0.04 inches W.C. during a low burn, measured 6 inches (152mm) above the top of the appliance after one hour of operation at each burn setting.

5 Appliance Set-Up

A. Outside Air Kit Installation

A source of air (oxygen) is necessary in order for combustion to take place. Whatever combustion air is consumed by the fire must be replaced. Air is replaced via air leakage around windows and under doors. In homes that have tightly sealed doors and windows, an outside air source is needed. An optional Outside Air Kit is available.

Items Needed for Installation (not supplied)

- 4 inch flex aluminum pipe, or if using alternate material, then it shall be made from durable, non-combustible, heat resistant material up to 350°F. Cut the pipe to the required length for your installation.
- · Phillips head screw driver
- Silicone sealant
- Drills and saws necessary for cutting holes through the wall or flooring in your home.

Installation Instructions

1. Remove all materials from packing box.

2. Floor & Rear Installation:

Cut a 4 inch (102mm) hole in outside wall or floor to accommodate outside air piping. Use 4 inch (102mm) aluminum metal flex or rigid piping to directly connect outside air to appliance intake. Use the supplied termination cap with a rodent screen. Seal between the wall (or floor) and the pipe with silicone to prevent moisture penetration.

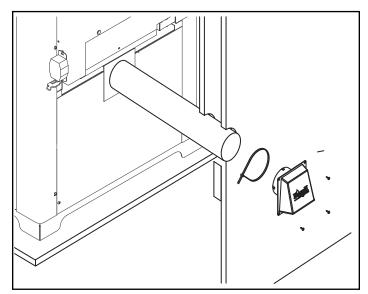


Figure 16.1 - Rear Installation

WARNING

Fire Risk. Asphyxiation Risk.

Do not draw outside combustion air from:

- · Wall, floor or ceiling cavity
- · Enclosed space such as an attic or garage
- Close proximity to exhaust vents or chimneys

Fumes or odor may result

WARNING

Asphyxiation Risk.

Outside air inlet must be located to prevent blockage from:

- Leaves
- Snow or ice
- Other debris

Block may cause combustion air starvation

Smoke spillage may set off alarms or irritate sensitive individuals.

WARNING

Asphyxiation Risk.

Length of outside air supply duct shall NOT exceed the length of the vertical height of the exhaust flue.

- Fire will not burn properly
- Smoke spillage occurs when door is opened due to air starvation.

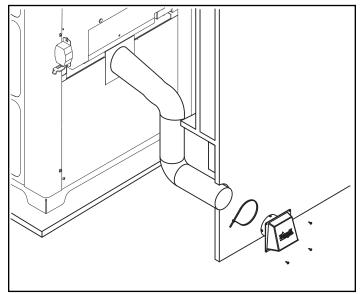
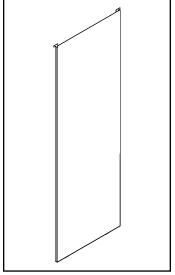



Figure 16.2 - Floor Installation

USA

B. Decorative Panel Removal & Installation

Your appliance ships with two different side options, one is a solid side panel (Figure 17.1) and tile side panel (Figure 17.2). There are two of each and no left or right side, these can be changed at anytime.

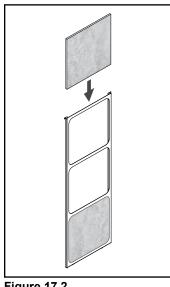


Figure 17.1

Figure 17.2

The appliances are being shipped with a solid side panel securing clip on both sides. Please remove and discard pins prior to use (Figures 17.3).

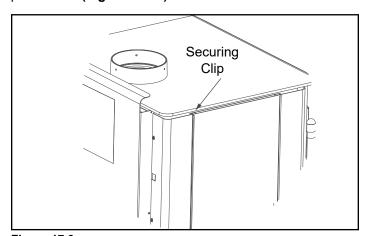


Figure 17.3

Solid Side Panel Removal

Remove solid panel from side by lifting up and pulling away from appliance (use a flat tool to pry from bottom if needed) (Figure 17.4).

NOTE: 300°F high temp paint can be use to repaint the solid side panel only! DO NOT use on the rest of appliance this requires 1200°F high temp paint.

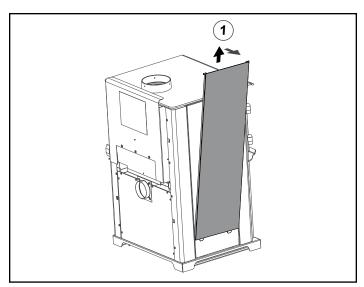


Figure 17.4

Tile Panel Installation

- 1. Remove tile frame from side by lifting up and pulling away from appliance (Figure 17.4 reference solid side panel removal).
- 2. Stack non-combustible material tiles in tile frame as shown in Figure 17.2.

WARNING

Fire Risk.

Use only noncombustible materials as a decorative tile.

3. Reattach tile frame (Figure 17.5).

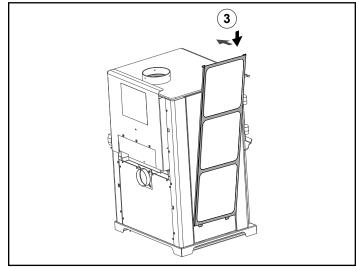


Figure 17.5

Tile Dimensional Requirements:

Max Thickness: 5/16"

Max Length/Width: 11-7/8" square Min Length/Width: 11-11/16" square

C. Door Handle Assembly

1. Install fiber handle to door handle rod.

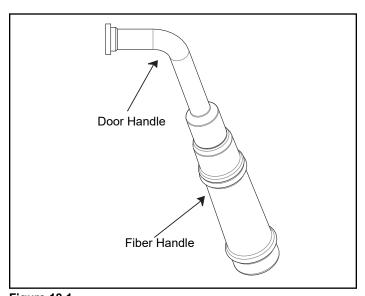


Figure 18.1

D. Blower (Optional)

- 1. Locate bolts supplied with the blower.
- 2. Align holes in mounting flange of blower with bolt holes in appliance. Blower should be positioned at bottom of rear outer skin as shown in **Figure 18.2**
- 3. Re-insert and tighten bolts, securing blower onto outer wall of appliance.
- 4. Place the bracket containing the snap disc and magnet under the bottom left rear corner.

See **Owner's Manual** for detailed operating instructions for the blower and snap disc.

CAUTION

Shock Risk.

- Do NOT remove grounding prong from plug.
- Route cord away from appliance.
- Do NOT route cord under or in front of appliance.
- Plug directly into properly grounded 3 prong receptacle.

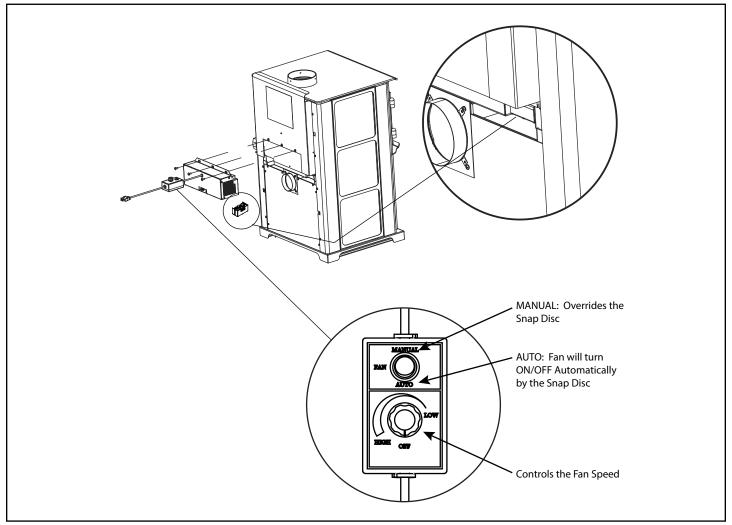


Figure 18.2

Mobile Home Installation

You must use a Quadra-Fire Outside Air Kit Part OAK-ACC; which is available from you dealer, for installation in a mobile home.

- 1. An outside air inlet must be provided for combustion (See page 16 for installation instructions).
- 2. Appliance must be secured to the mobile home structure by bolting the legs to the floor.
- 3. Appliance must be grounded with #8 solid copper grounding wire or equivalent and terminated at each end with N.E.C. approved grounding device.
- 4. Appliance must be installed with an approved UL103 HT ventilated chimney connector, UL103 HT chimney, and terminal cap with spark arrestor. Never use a single wall connector (appliance pipe) in a mobile home installation. Use only double-wall connector pipe, Dura-Vent DVL, Selkirk Metalbestos DS or Security DL double-wall connector or any listed double-wall connector pipe.
- In Canada, this appliance must be connected to a 6 inch (152mm) factory-built chimney conforming to CAN/ULC-629M, STANDARD FOR FACTORY BUILT CHIMNEYS.
- 6. Follow the chimney and chimney connector manufacturer's instructions when installing the flue system for use in a mobile home.
- 7. Maintain clearance to combustibles.
- 8. Floor protection requirements must be followed precisely.
- 9. Use silicone to create an effective vapor barrier at the location where the chimney or other component penetrates to the exterior of the structure.

NOTE: Offsets from the vertical, not exceeding 45°, are allowed per **Section 905(a)** of the **Uniform Mechanical Code (UMC)**. Offsets greater than 45° are considered horizontal and are also allowed, providing the horizontal run does not exceed 75% of the vertical height of the vent. Construction, clearance and termination must be in compliance with the **UMC Table 9C**. This installation must also comply with **NFPA 211**.

NOTE: Top sections of chimney must be removable to allow maximum clearance of 13.5 feet (411cm) from ground level for transportation purposes.

- 10. Burn seasoned cord wood only. Other types of fuels may generate poisonous gases (e.g., carbon monoxide).
- 11. If appliance burns poorly while an exhaust blower is on in home, (i.e., range hood), increase combustion air.
- 12. Installation shall be in accordance with the Manufacturers Home & Safety Standard (HUD) CFR 3280, Part 24.

CAUTION

THE STRUCTURAL INTEGRITY OF THE MOBILE HOME FLOOR, WALL AND CEILING/ROOF MUST BE MAINTAINED

Do NOT cut through:

- Floor joist, wall, studs or ceiling trusses.
- Any supporting material that would affect the structural integrity.

WARNING

Asphyxiation Risk.

NEVER INSTALL IN A SLEEPING ROOM. Consumes oxygen in the room.

WARNING

Fire Risk.

Do Not use single wall connector pipe anywhere in a mobile home installation.

7

Reference Materials

A. Service & Maintenance Log

Date of Service	Performed By	Description of Service
	1	

Beginning Manufacturing Date: June2017 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.

Stocked at Depot

ITEM	DESCRIPTION	COMMENTS	PART NUMBER						
ACCESSORIES									
	Blower Assembly		BK-ACC						
	Blower Convection		812-4900						
	Blower Control Box w/Switch		SRV7000-194	Υ					
	Component Pack		7033-051						
	Snap Disc Bracket Assembly		SRV7033-036						
	Snap Disc, # 1, Convection Blower		SRV230-0470	Υ					
	Wire Harness, Blower		7033-262						
	Outside Air Kit, Floor & Rear		OAK-ACC						
	Outside Air Collar Assembly		SRV7033-039						
	Outside Air Shield		SRV33271	Υ					
	Outside Air Cover Plate Assembly		SRV7033-041	Υ					

CONTACT INFORMATION

Hearth & Home Technologies 352 Mountain House Road Halifax, PA 17032 Division of HNI INDUSTRIES

Please contact your Quadra-Fire dealer with any questions or concerns.

For the number of your nearest Quadra-Fire dealer
log onto www.quadrafire.com

CAUTION

DO NOT DISCARD THIS MANUAL

- Important operating and maintenance instructions included.
- Read, understand and follow these instructions for safe installation and operation.
- Leave this manual with party responsible for use and operation of this appliance.

We recommend that you record the following pertinent information for your heating appliance.

Serial Number:	Location on appliance:
Dealership purchased from:	Dealer Phone: 1() -
Notes:	

This product may be covered by one or more of the following patents: (United States) 5341794, 5263471, 6688302, 7216645, 7047962 or other U.S. and foreign patents pending.

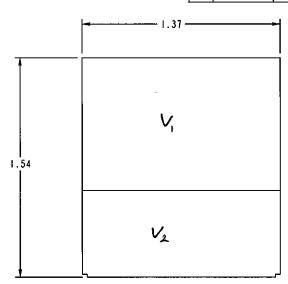
Appendix A Firebox Volume

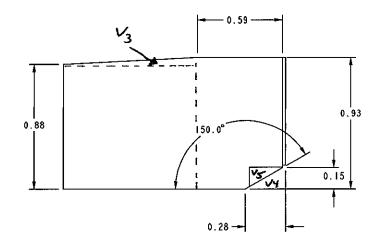
PROTOTYPE

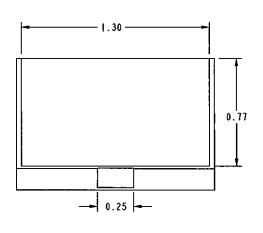
ITEM PART NUMBER PART NAME QTY

H W D

Vi: 0.88 x 1.37 x 0.95 = 1.14532


V2 = 0.93 × 1.37 × 0.59 = 0.751719


V3= 0.05x 1.37 x 0.95 = 0.0325375 1.9296 ft3


1.9296

 $V_{4} = \frac{0.15 \times 1.37 \times 0.28}{2} = 0.02877 \qquad \frac{1.7276}{0.0393}$ $V_{5} = 0.15 \times 0.25 \times 0.28 = \frac{0.0105}{0.03927} \text{ ft}^{3}$

30= 2/13/17

					UNLESS OTHERWISE SPECIFIED: TOLERANCE - (2)	OUTSIDE APEX.	(3) PLACE DEC: ±0. — INSIDE APEX - D	D&S ANGLE: 士2° F IMS ENCLOSED BY AN	RACTION: ±1/16 OVAL ARE CRITICAL DIMENSIONS
					3 0	PART MANE:	FIREBOX VOL	UME 1.90 c	u. ft.
					HEARTHEHOME	DRAWN BY: BLW	0 . 25	MATERIAL:	МА
	PROTOTYPE					THIS PRINT IS CHECKED AND	CONTROLLED BY THE ENGINEERIS	G SHEET:	PART HUMBER: REV:
REV	REVISIONS	ECO #	DATE	BY	CONFIDENTIAL PROPERTY OF HEARTH & HOME TECHNOLOGIES INC.	DEPARTMENTS OF HEART	H & NOME TECHNOLOGIES INC.	lofl	7033-VOLUME 04

Appendix B Revision History

Date	Project No.	Tech. & Evaluator	Report Sect.	Summary of Changes
3/21/17	0061WS066E.REV002	Bruce Davis	All	Original report was generated.
			Preface	Cover, signatories, and table of content updated for new edition.
			1	Sampling Procedure updated by adding B415 example calculation information. Individual run summary updated by adding the word appropriate to all runs and adding negative filter information for run 5. Table 3 updated by changing CO emissions from grams per hour to grams per minute and adding average CO emissions.
8/17/21	0061WS066E.REV002 Edition 001	Bruce Davis	5	Updated conditioning data on page 24 by adding fuel weight information. Sample train precision data added to pages 27, 39,51, 63, and 75.
				Updated manual and label replaced 2017 version.
			3	Updated conditioning data with fuel moisture on page 24.
10/27/21	0061WS066E.REV002 Edition 002	Bruce Davis	5	Updated manual on page 142 with corrected firebox volume.
2/09/22	0061WS066E.REV002 Edition 003	Bruce Davis	Appendix A	Firebox volume was added.
			1	Corrected/Uncorrected values added to each test run (pg8)
			3	Dilution Tunnel Schematic added to test report (pg23) Run 5 Corrected Data added (pg 77)
11/13/2024	0061WS066E.REV002 Edition 004	R Tiegs K Morgan	4	Added statement for microtector confirming it was properly zeroed and leveled prior to use. (pg 96)
			3	For clarification, "good" indicated on the pitot leak checks of the hand-written notes for each test run means "zero leakage". (pg35,47,59,71,84)